
1. Introduction
Measuring and predicting water quality variability is valuable for understanding and managing coastal marine 
and estuarine ecosystems (Álvarez-Romero et al., 2014). For example, understanding changes in water quality 
over space and time can aid the restoration and conservation of submerged aquatic vegetation, which is often 
limited by light availability (Carr et al., 2010). The health of coastal oceans are also tied to human well-being, 
with about 40% of the global population living within 100 km of the coast (Maul & Duedall, 2019). Coastal water 
quality impacts primary productivity and marine life, with associated impacts on fishing and industry (Cloern 
et al., 2014). Eutrophication, caused by an excess of nutrients and measured by changes in water quality metrics, 
can lead to hypoxia, harmful algal blooms, and fish kills (Sullivan et al., 2021).

Water clarity—a key component of water quality—has historically been measured using Secchi disks: black and 
white painted disks that are lowered into the water to estimate the depth at which they are no longer visible from 
the surface (Secchi depth [ZSD]; Preisendorfer, 1986). Secchi disks serve as a reliable, repeatable, and low-cost 
tool; thus, they have contributed to extensive long-term records of overall water quality (Lee et al., 2015). For 
example, they are used by citizen scientists (Luis et  al.,  2019) to greatly expand sampling coverage, and in 
national assessments to measure water clarity as an ecological indicator for eutrophication (Sullivan et al., 2021). 
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However, due to logistical constraints, ZSD and other in situ point measurements cannot fully capture broad-scale, 
long-term spatiotemporal variability in water clarity. Hence for most regions and time periods, there are large 
gaps in records of water clarity (Lee et al., 2016; Luis et al., 2019). Coupling remotely-sensed satellite meas-
urements with in situ measurements could provide a more complete understanding of water quality changes and 
drivers in coastal ecosystems, as well as a way to separate directional trends from natural variability.

ZSD and other biogeochemical parameters can be estimated by satellites measuring water-leaving radiances in 
the visible spectrum, referred to as “ocean color” (Lee et al., 2016; Werdell & McClain, 2019). Ocean color data 
can be helpful in studying coastal waters on a synoptic scale (>100 km 2), but coastal environments pose unique 
challenges to ocean color remote sensing; thus, most studies to link in situ and remotely sensed water clarity have 
been based in open ocean environments (Concha & Schott, 2016; Morel & Bélanger, 2006). High concentrations 
of particulate organic matter and suspended sediments, proximity to land, backscattering from shallow waters, 
and bubbles from breaking waves affect bio-optical measurements (Loisel et al., 2013). Validation with in situ 
measurements is crucial before implementing ocean color algorithms in any water body, but the unique chal-
lenges posed by the coastal zone make it especially important to develop and validate such algorithms.

A second challenge posed by satellite estimation of coastal water clarity is that the spatial resolution of traditional 
ocean color satellite sensors (≤1 km) is too coarse to avoid interference by landforms while capturing spatial vari-
ation across coastal waters features (e.g., river mouths, ocean inlets, coastal lagoons). Fortunately, the Landsat-8's 
Operational Land Imager (OLI) and the Sentinel-2's MultiSpectral Instrument (MSI) have moderate-to-high 
spatial resolution (10–60  m) that enable observations in coastal environments (Franz et  al.,  2015; Pahlevan 
et al., 2019). The benefit of combining these observations has been recently demonstrated. For example, NASA's 
Harmonized Landsat Sentinel (HLS)-2 project shows that using the two satellites in unison increases data accu-
racy and temporal resolution (Masek et al., 2018).

However, studies using Landsat 8 and Sentinel-2 to measure water clarity have largely focused on lakes and rivers, 
highlighting the need to evaluate product consistency in coastal seas (Chen et al., 2020; Manzo et al., 2015; Page 
et al., 2019). The Lee et al. (2015) semi-analytical ZSD model has been applied to various water bodies, but cross 
comparisons of OLI and MSI have been limited in coastal seas and require further investigation for effective 
usage of satellite imagery for water quality monitoring (Chen et al., 2019; Lee et al., 2016; Liu et al., 2019; Luis 
et al., 2019).

Thus, this work evaluates the accuracy and consistency of Landsat-8 and Sentinel-2 water clarity estimates in a 
coastal ocean lagoon system in Virginia, USA. Satellite estimations of ZSD estimates were compared with corre-
sponding in situ ZSD from long-term in situ sampling efforts and these comparisons informed the development 
of regionally tuned ZSD models for Landsat 8 and Sentinel 2. These results reveal that regionally tuned satellite 
models can improve the estimation of overall water quality in shallow, turbid coastal areas.

2. Methods
2.1. Study System and In Situ Data Collection

We focused our investigation on a coastal lagoon system studied by the Virginia Coast Reserve (VCR) Long Term 
Ecological Research Project (VCR-LTER) located on the Eastern Shore of Virginia, USA, near the southern tip 
of the Delmarva Peninsula (Figure 1). The VCR is the largest expanse of undeveloped coastline along the U.S. 
Atlantic seaboard. Low nitrogen inputs and frequent exchange with the Atlantic Ocean via inlets between barrier 
islands (Figure 1) results in relatively good water quality in comparison with most temperate coastal bays and 
estuaries in the United States and worldwide (McGlathery et al., 2001). Due to low human impacts, the VCR 
serves as a model system for studying the long-term impacts of climate on temperate coastal lagoons. The VCR 
also serves as the site of a successful large-scale eelgrass restoration project, after a massive die-off in the early 
1930s due to storms and disease (Reynolds et al., 2016). Water quality monitoring in the bay has informed resto-
ration efforts and helped quantify positive environmental effects of restoration (Orth et al., 2020). Since 1992, 
VCR-LTER researchers have collected ZSD and other water quality parameters at 17 sites that include tidal flats 
(0–2 m depth), deep flats (2–4 m depth), and deeper oceanic inlets and channels (>4 m depth) (McGlathery & 
Christian, 2020; Safak et al., 2015). Sampling was carried out monthly from 1998 to 2008, and quarterly from 
2008 to 2021 (McGlathery & Christian, 2020). Temperature, salinity, and dissolved oxygen (converted to appar-
ent oxygen utilization) were measured with a YSI Datasonde (6600 V2). Total suspended solids were estimated 
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via dry weight difference after filtering water samples with Whatman GF/F filters (0.7 μm nominal pore size), 
chlorophyll-a and phaeopigments were determined spectrophotometrically, and 500  mL water samples were 
analyzed for nutrient concentrations on a Lachat Quick-Chem 8500 flow-through analyzer.

2.2. Satellite Data Processing and Algorithm Evaluation

To retrieve remote sensing reflectances (Rrs) for the calculation of satellite-derived ZSD, Landsat-8 and Sentinel-2 
Level-1 images were collected. The Sentinel-2A and -2B satellites have a combined 5-day repeat orbit, while 
Landsat-8 has a 16-day repeat orbit. The OLI on Landsat-8 collects data at a 30 m spatial resolution in four spec-
tral bands centered on wavelengths 443, 482, 561, and 655 nm. The MSI on Sentinel-2 collects data at 60 m spatial 
resolution with a band centered on 443 nm and at 10 m resolution for bands centered on 490, 560, and 665 nm. 
USGS Earth Explorer was used (U.S. Geological Survey, 2022; https://earthexplorer.usgs.gov/, accessed June 
2019 through July 2022) to collect Level-1 Collection-1 Landsat-8 images (https://doi.org/10.5066/F71835S6) 
and the Copernicus Open Access Hub (European Space Agency, 2022; https://scihub.copernicus.eu/, accessed 
June 2020 through July 2022) to collect Level-1 Collection-1 Sentinel-2 images. The Landsat-8 and Sentinel-2 
satellite images used in this study are listed as Tables S1 and S2 in Supporting Information S1, respectively.

Rrs were generated with two atmospheric correction processors: NASA's standard Level-2 generator atmospheric 
correction algorithm (l2gen) in NASA SeaDAS 8.2 (Baith et al., 2001) and ACOLITE from the Royal Belgian 
Institute of Natural Sciences (Version 20220222.0) (Vanhellemont, 2019, 2020; Vanhellemont & Ruddick, 2018). 
In l2gen, the NASA standard NIR-SWIR algorithm with bands 5 and 7 (865 and 2,201 nm) were selected for 
atmospheric correction of coastal waters (Wei et al., 2018). The following default Level-2 quality flags were 
used: CLDICE (probable cloud or ice contamination), HILT (very high or saturated radiance), and STRAY-
LIGHT (straylight contamination). LAND (pixel is over land) was deselected due to the default land mask being 
too coarse for this area and the following reflectance thresholds were used to flag and remove land pixels: 
Rrs(655)  <  0.01, Rrs (561)  <  0.012, Rrs (482)  <  0.001, and Rrs (443)  <  0.001. The bidirectional reflectance 
distribution function of Morel et al. (2002) was implemented. In ACOLITE, the default Dark Spectrum Fitting 
algorithm was implemented (Vanhellemont, 2019, 2020; Vanhellemont & Ruddick, 2018) with default masks for 

Figure 1. Map of the 17 tested sites with in situ ZSD data. Numbers identify each site. Green markers indicate that satellite data could be collected at the site using the 
appropriate quality flags, while red markers indicate sites without valid satellite data.

 23335084, 2023, 7, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022E

A
002579, W

iley O
nline L

ibrary on [03/08/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://earthexplorer.usgs.gov/
https://doi.org/10.5066/F71835S6
https://scihub.copernicus.eu/


Earth and Space Science

LANG ET AL.

10.1029/2022EA002579

4 of 16

land, negative reflectances, cirrus clouds, and high reflectance. Valid Rrs from l2gen and ACOLITE were recov-
ered at 12 of 17 in situ sampling sites (five sites were too close to land): six ocean inlet sites, two lagoon sites, and 
three mainland tidal creek sites (Figure 1).

ZSD was computed by deriving inherent and apparent optical properties from Rrs. The Quasi-Analytical Algorithm 
(QAA, version 6) was used to derive total absorption (a) and backscattering (bb) coefficients from Rrs with the 
QAA (Lee et al., 2002), and these inherent optical property (IOP) coefficients were used to calculate the diffuse 
attenuation coefficient (Kd) with Lee et al., 2013. Kd(530) was determined empirically by the methods of Lee 
et al. (2016) to fill the large spectral gap between 482 and 561 nm. The minimum Kd value, the spectral band with 
the lowest attenuation, and the Rrs value at the corresponding wavelength (𝐴𝐴 𝐴𝐴

tr

rs
 ), were then used to compute the 

satellite derived Secchi depth (ZSD,sat, m) (Equation 1) (Lee et al., 2015, 2016).

𝑍𝑍SD,sat =
1

2.5Min
(

𝐾𝐾
tr

𝑑𝑑

) ln

(

0.14 −𝑅𝑅
tr

rs

0.013

)

 (1)

Satellite imagery within ±0–1 day of in situ sampling were used (2 OLI images, 6 MSI images) and ZSD,sat was 
found by averaging pixels in a 3 × 3 box (90 × 90 m for Landsat-8, 30 × 30 m for Sentinel-2) centered around the 
corresponding in situ site coordinate (Figure S1 in Supporting Information S1). The impact of anomalous data 
points on the spatial averaging within the 3 × 3 box was evaluated by also calculating the median of the 3 × 3 
box. The mean and medians were not statistically different (Landsat-8: P = 0.5; Sentinel-2: P = 0.9). We did 
not filter for large variance due to limited match-ups, as is done in some studies using a coefficient of variation 
threshold (Dogliotti et al., 2011; Mélin, 2022). L2gen yielded 11 matchups from OLI and 41 matchups from 
MSI. ACOLITE yielded 3 OLI and 44 MSI matchups. The number of observations varied by site and date due to 
varying cloud cover and choice of quality flags. We removed matchups with recorded water depths within 0.5 m 
of the recorded in situ Secchi depths. The workflow is synthesized in Figure 2.

2.3. Cross Sensor Comparison

Landsat-8 and Sentinel-2 Secchi depths from l2gen and the Lee et al. (2016) algorithm (ZSD,sat) (Equation 1) from 
the same day at the same location were compared. This approach yielded 5 clear-sky same-day images from 2021, 
from which we sampled 150 random coordinates using QGIS 3.14 (QGIS.org, 2020). We compared Landsat-8 
ZSD,sat and Sentinel-2 ZSD,sat using a Type II ordinary least squares linear regression.

2.4. Modeling for Algorithm Adjustment

We used Type II ordinary least squares linear regression to predict in situ Secchi depths (ZSD,insitu) from satellite 
Secchi depth estimates (ZSD,sat) from l2gen and ACOLITE to determine which atmospheric correction software 
was most suitable. We also fit two individual linear models for Landsat-8 and Sentinel-2 data to determine 
whether Landsat-8 and Sentinel-2 differed in their predictions of in situ ZSD and to determine the proportion of 
variance of in situ ZSD explained by each satellite separately.

Models were fit in R 4.2.1 (R Core Team, 2022). We assessed the significance of model terms using F tests to 
determine if the model better fit the data than the ZSD algorithm. We checked for homogeneity of variance by 
plotting normalized model residuals against model predictions and individual predictors. We ensured normality 
of residuals using histograms and quantile-quantile plots. We tested for temporal autocorrelation using autocor-
relation function analysis; no significant autocorrelation was detected.

2.5. Model Assessment

We evaluated model skill by comparing modeled Secchi depths (ZSD,model) to in situ Secchi depths (ZSD,insitu) using 
the root mean square error (RMSE) and the mean absolute percent difference (MAPD) in R using the package 
Metrics 0.1.4 (Hamner & Frasco, 2018).

RMSE =

√

√

√

√

1

𝑛𝑛

𝑛𝑛
∑

𝑖𝑖=1

(𝑥𝑥model,𝑖𝑖– 𝑥𝑥in situ,𝑖𝑖)
2 (2)
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MAPD = 1
�

�
∑

�=1

|

|

|

|

�model,�– �in situ,�

�in situ,�

|

|

|

|

× 100% (3)

Due to the lack of a sufficient number of observations for an out-of-sample validation, we assessed the uncer-
tainty in the model coefficients by calculating the standard errors and confidence intervals with bootstrapping 
(n = 10,000) (R package boot 1.3–28; Canty & Ripley, 2021; Davison & Hinkley, 1997).

Figure 2. Workflow for obtaining ZSD with l2gen in NASA SeaDAS, bio-optical algorithms, and empirical adjustments. l2gen ultimately chosen over ACOLITE for 
processing (Section 3.1).
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2.6. Spatiotemporal Analysis

We compared spatial trends of water clarity maps generated from clear sky Landsat-8 and Sentinel-2 images 
taken on the same day (30 January 2021). We also generated monthly water clarity maps from clear sky Landsat-8 
images to demonstrate changing spatial patterns with time. To determine the benefit of increased temporal cover-
age, we visually compared temporal patterns in time series of combined satellite model estimates (n = 396 obser-
vations; 2013–2021) and all in situ data (n = 306 observations; 1992–2021) at three water quality sites in a lagoon 
(site 2), mainland creek (site 6), and ocean inlet (site 16). Specifically, generalized additive models (GAMs; Hastie 
& Tibshirani, 1986) were used to estimate nonlinear trends as a function of date (interannual variation), year-day 
(seasonal variation), and their interaction (tensor product) in R using the package mgcv 1.8–35 (Wood, 2017). By 
checking k-indices and P values, the following number of basis functions were selected: (a) 15 for date, (b) 15 
for year day, and (c) 10 for the interaction/tensor product. Thin plate regression splines, computationally-efficient 
splines used to estimate smooth functions of multiple predictors, were used to model interannual variation and the 
interaction. We used cyclic cubic splines to model seasonal variation to avoid a discontinuity between the end and 
beginning of the year (Wood, 2017). To investigate seasonal trends in in situ water quality data, we used locally 
weighted scatterplot smoothing fits.

3. Results
3.1. Algorithm Evaluation

Satellite estimates overpredicted ZSD relative to their corresponding in situ values by an average factor of about 
2.4 for l2gen and 1.8 for ACOLITE. l2gen and ACOLITE ZSD both predicted in situ ZSD (l2gen: R 2adj = 32.5%, 
F1,49  =  25.05, P  <  0.001; ACOLITE: R 2adj  =  22.0%, F1,43  =  13.38, P  <  0.001; Figure  3) and NASA l2gen 
yielded larger ZSD from the Lee et al. (2016) algorithm (mean, 𝐴𝐴 𝑥𝑥  = 1.75 m, standard deviation, s = 0.46 m) than 
ACOLITE (𝐴𝐴 𝑥𝑥  = 1.30 m, s = 0.24 m). However, ACOLITE still overpredicted ZSD relative to the corresponding in 
situ values (𝐴𝐴 𝑥𝑥  = 0.77 m, s = 0.26 m).

Figure 3. ZSD predictions from l2gen (a) were generally greater than those from ACOLITE (b), although both were positively correlated with in situ measurements. 
Dotted line shows 1:1 relationship.
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3.2. Cross-Sensor Comparisons

ZSD estimates from the three satellites were highly correlated with a linear 
relationship (R 2adj = 85.3%, F1,545 = 3,170, P < 0.001). Sentinel-2 generally 
yielded higher ZSD,sat than Landsat-8 (note that most points are below the 1:1 
line in Figure 4).

3.3. Model Statistics and Assessment

Spectral shapes were similar for both atmospheric correction processors, but 
ACOLITE systematically yielded larger Rrs than l2gen (Figure S2 in Support-
ing Information  S1). Although ACOLITE yielded ZSD,sat that were closer 
to the 1:1 line (ZSD,model = 0.56 ZSD,sat + 0.04; Figure 3a) than l2gen ZSD,sat 
(ZSD,model  =  0.33 ZSD,sat  +  0.19; Figure  3b), R 2adj, model skill metrics, and 
standard errors were better for the l2gen-based model (Table 1).

Due to differences in Landsat-8 and Sentinel-2 ZSD,sat estimates (Figure 4), 
the final algorithm adjustment involved separate satellite models (Equa-
tions 4 and 5). We also used l2gen atmospheric correction due to improved 
results over ACOLITE (Table 1).

Landsat-8 ∶ 𝑍𝑍SD,model = 0.25𝑍𝑍SD,sat + 0.36 (4)

Sentinel-2 ∶ 𝑍𝑍SD,model = 0.37𝑍𝑍SD,sat + 0.10 (5)

The final model (Equations 4 and 5; Figure 5) improved estimates (Landsat-8: 
RMSE = 0.16 m, MAPD = 19%; Sentinel-2: RMSE = 0.22 m, MAPD = 26%; 
Table 2) relative to the Lee et al. (2016) model (Landsat-8: RMSE = 1.04 m, 
MAPD = 121%; Sentinel-2: RMSE = 1.05 m, MAPD = 148%).

Model skill was similar among lagoon, mainland creek, and ocean inlet sites (Figure 6). There were no clear 
trends between water depth and model performance (Figure S3 and Table S3 in Supporting Information S1). 
Ocean inlet sites are most well-represented in the model, although the MSI model tends to underestimate high 
ZSD at ocean inlet sites and overestimate low ZSD (orange in Figure 6c).

3.4. Spatiotemporal Analysis

Spatial trends within the system were similar in Landsat-8 and Sentinel-2 water clarity maps taken on the same 
day, providing confidence that the remote sensing data is capturing robust geophysical and ecological patterns. 
Flows from the inlets through the deeper channels have higher ZSD (ca. >0.8 m) than the surrounding water 
(ca. 0.4–0.7 m), and plumes off-shore of inlets have shallower ZSD (0.6–0.8 m) than further offshore (>1 m). 
Sentinel-2 MSI had a larger ZSD range (ca. 0.3–1 m) than Landsat-8 OLI (ca. 0.4–0.9 m) and captured finer scale 
spatial variability (Figure 7). Satellite images from individual dates highlight that Secchi depths in this system are 
highly variable in both time and space (Figure 8).

Figure 4. Landsat-8 ZSD,sat plotted against Sentinel-2 ZSD,sat. Sentinel-2 
generally yielded higher ZSD,sat than Landsat-8. Dashed 1:1 line as in Figure 3. 
Linear fit in red.

l2gen (SeaDAS) ACOLITE

RMSE 0.21 m 0.24 m

MAPD 25% 27%

Mean, standard error, and 95% CIs of the slope 0.33 ± 0.07 [0.22, 0.49] 0.56 ± 0.15 [0.29, 0.91]

Mean, standard error, and 95% CIs of the intercept 0.19 ± 0.11 [−0.08, 0.38] 0.04 ± 0.19 [−0.39, 0.37]

R 2adj 32.5% 22.0%

Note. For each atmospheric correction method, the RMSE, MAPD, Mean, standard error, and 95% CIs of the intercept, and 
R 2adj are reported.

Table 1 
Comparison of In Situ and Satellite Derived ZSD From l2gen (SeaDAS) and ACOLITE
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Season cycles were significant at all three sites (Site 2: P < 0.001, Site 6: P = 0.002, Site 16: P < 0.001), as well 
as the tensor product explaining the interaction between interannual and seasonal variability (Site 2: P = 0.006, 
Site 6: P = 0.009, Site 16: P = 0.01; Figures 9a, 9c, and 9e). Sites 2 and 16 experienced the strongest seasonality 
and water clarity dips around July, corresponding to a dip in in situ ZSD and peaks in in situ particulate inor-
ganic matter, total suspended solids, apparent oxygen utilization, chlorophyll-a, phaeopigments, PO4, and NH4 
(Figure 10). Interannual trends were not significant at any of the 3 sites (Site 2: P = 0.20, Site 6: P = 0.66, Site 
16: P = 0.26; Figures 9b, 9d, and 9f).

4. Discussion
Landsat-8 and Sentinel-2 models were developed to increase and improve water clarity observations in the 
VCR-LTER. Our results demonstrate that high-resolution satellite observations can enable the estimation of 
water clarity in estuaries and coastal seas across a range of spatiotemporal scales, but require sensor-specific 
calibration and validation with in situ measurements. We anticipate that our approach can be adapted to coastal 
waters broadly where environmental monitoring organizations are limited to in situ data and potentially biased 
satellite estimates. The potential for high frequency water clarity estimation is further enhanced because we found 
that Landsat-8 and Sentinel-2 reflectances and Secchi depths are highly comparable.

Figure 5. ZSD,sat from Landsat-8 (a) and Sentinel-2 (b) plotted against ZSD,insitu. The single-satellite regression models 
(Equations 4 and 5) are plotted as solid lines with 95% confidence intervals plotted in gray.

Landsat-8 OLI (l2gen) Sentinel-2 MSI (l2gen)

RMSE 0.16 m 0.22 m

MAPD 19% 26%

Mean, standard error, and 95% CIs of the slope 0.25 ± 0.092 [0.10, 0.48] 0.37 ± 0.094 [0.21, 0.58]

F, P value of the slope F = 7.30, P = 0.024 F = 19.22, P < 0.001

Mean, standard error, and 95% CIs of the intercept 0.36 ± 0.16 [0.005, 0.64] 0.10 ± 0.16 [−0.25, 0.38]

F, P value of the intercept F = 4.74, P = 0.06 F = 0.44, P = 0.51

Mean and standard error of R 2adj 38.6% ± 22% 31.8% ± 14.5%

Table 2 
Model Skill Metrics, Model Uncertainties, and Fixed-Effects Results for Satellite Models
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4.1. Satellite Overestimation of ZSD

Biases introduced during atmospheric correction could have led to satellite ZSD overestimation. The atmospheric 
correction methods implemented by l2gen explained more variation in in situ ZSD than ACOLITE (Figure 3, 
Table 1). This result complements previous work showing that l2gen performs better than ACOLITE for turbid 
waters and complex, optically shallow coastal environments (Ilori et al., 2019; Vanhellemont, 2019, 2020; Wei 
et al., 2018). We also found that ACOLITE consistently yielded higher reflectance values than l2gen at all four 

Figure 6. ZSD,sat from Landsat-8 (green) and Sentinel-2 (orange) plotted against ZSD,insitu for each site type. Sites no. 8 and 16 are lagoons, sites no. 2, 13, and 14 are 
mainland creeks, and sites no. 3, 5, 6, 12, 15, and 17 are ocean inlets. Landsat-8 (green) and Sentinel-2 (orange) prediction lines are plotted. Mean absolute percent 
difference (MAPD) and root mean square error (RMSE) are reported for each region. Sample size is not equal between site types.

Figure 7. Maps of model-corrected Landsat-8 derived ZSD (a) and Sentinel-2 derived ZSD (b) from 30 January 2021.
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wavelength bands (Figure S2 in Supporting Information S1). These results are consistent with the findings of Ilori 
et al. (2019) who compared different atmospheric correction methods over optically complex coastal waters using 
in situ radiometric measurements from the Aerosol Robotic Network—Ocean Color (AERONET-OC). Future 
work could investigate other atmospheric correction algorithms such as Case 2 Regional CoastColour (C2RCC) 
and POLYnomial-based algorithm applied to Medium Resolution Imaging Spectrometer (POLYMER) in this 
water body as was done in the Chesapeake Bay (Windle et al., 2022).

Validation of remote sensing products with in situ radiometric observations would be useful in regionally adjust-
ing the algorithm. However, using an existing long-term data set for regional adjustment, as demonstrated in this 
paper, has its own advantages compared to this approach. Long term datasets have repeated seasonal sampling, 
so statistical models are less biased by the timing of in situ sampling. Capturing a wide range of variability 
in in situ sampling is especially important in systems that experience dynamic change across seasons. Using 
existing datasets is also cost effective compared to radiometric calibration. Another source of bias could have 

Figure 8. Maps of model-corrected Landsat-8 derived Secchi depths from monthly clear sky images (2019–2021).
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been  introduced during the derivation of IOPs. It has been found that the QAA can lead to underestimation of 
IOPs in turbid waters (Yang et al., 2014), which ultimately leads to an overestimation of ZSD. Alternative Rrs to 
IOP algorithms, such as the “QAA turbid” (Yang et al., 2014), or alternative ZSD algorithms could possibly yield 
more accurate ZSD values.

4.2. Using Sentinel-2 Data in Conjunction With Landsat-8 Data

The strong relationship between Landsat-8 and Sentinel-2 measurements (Figure 4) and similarities in spatial 
water clarity patterns (Figure 7) demonstrate the compatibility of their data products for estimating water clarity. 
We found that Sentinel-2 consistently yields larger ZSD values (corresponding to lower Rrs values) than Landsat-8, 
suggesting that differences are most likely due to inherent satellite product differences rather than environmental 
factors (e.g., tidal differences occurring in the temporal window between satellite overpasses).

We decided to fit two separate models for each satellite due to differences in satellite estimates and to preserve 
the highest spatial resolution of Sentinel-2 MSI. However, care must be taken when comparing water clarity maps 
with different spatial resolutions. Down-sampling Sentinel-2 MSI to the spatial resolution of Landsat-8 OLI may 
be necessary for certain spatial analyses. Although down-sampling did not affect match-ups used in modeling 
(Figure S1 in Supporting Information S1), differences are significant when models are applied to entire satellite 
images (Figure 7).

Another consideration regarding merging Landsat and Sentinel data is parametrizing NASA's HLS prod-
ucts, surface reflectances with 30 m spatial resolutions and 5 days temporal resolutions (Masek et al., 2018). 
Although developed primarily for terrestrial applications, HLS data have been used in water quality mode-
ling to increase temporal resolution while minimizing errors associated with satellite product differences 
(Peterson et al., 2020). The workflow for harmonizing products includes common atmospheric correction, 
spatial co-registration, normalization of the solar and view angles, and adjustment for differences in wave-

Figure 9. ZSD,insitu values (blue) and ZSD,model values (green: Operational Land Imager (OLI) and orange: MultiSpectral Instrument (MSI)) plotted against time (top; 
a, c, and e) and day of the year (bottom; b, d, and f) in a mainland creek (site 2; a–b), lagoon (site 6; c–d), and ocean inlet (site 16; e–f). Black lines show thin-plate 
regression splines and cyclic cubic splines for interannual (top) and seasonal (bottom) patterns from the generalized additive model, respectively. The splines were 
calculated from in situ, OLI, and MSI data. The 95% confidence intervals are plotted in gray.
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length bands (Claverie et al., 2018). This procedure corrects for Landsat-8/Sentinel-2 differences that could 
have contributed to the mismatch between Landsat-8 and Sentinel-2 reflectances and Secchi depths in our 
study.

Figure 10. Seasonal trends in water quality parameters at 17 sites as shown by locally weighted scatterplot smoothing (LOWESS) fits. All parameters except Secchi 
depth and water temperature have been standardized. Panel A shows a peak in temperature (blue) corresponding to a dip in Secchi depth (black) mid-summer. Water 
temperature data are shown in light blue and Secchi depth data are shown in gray. Panels B–D show the seasonal variations of water quality parameters as modeled 
by LOWESS. Particulate organic matter denoted by POM, particulate inorganic matter denoted by PIM, total suspended solids denoted by TSS, and total dissolved 
nitrogen denoted by TDN. Secchi depths are plotted as well, as shown by the gray data points and black smooth. Data from 1992 to 2020 water quality sampling 
(McGlathery & Christian, 2020).
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4.3. Data Collection and Model Limitations

Our work highlights the need for in situ bio-optical and water quality measurements to fully leverage satellite 
imagery as an effective and reliable water quality monitoring tool, especially in dynamic waters. Increasing the 
number of in situ match-ups, especially to cover a large dynamic range, will strengthen the predictive power of 
statistical water clarity models. In this study, in situ sites were limited to the area shown in Figure 1. Application 
of the satellite model (adjustment to standard water clarity algorithm) outside of the VCR-LTER region and 
conditions introduces potential uncertainties. This could be addressed in future work by expanding the spread of 
in situ evaluation sites to quantify the accuracy of the model outside this region.

Although both satellites capture similar spatial patterns (Figure 7), the Sentinel-2 model captures higher Secchi 
depth values than the Landsat-8 model. We had limited in situ data for Landsat-8 adjustment due to its infrequent 
overpass relative to Sentinel-2. The discrepancy could be due to the inclusion of high (>1 m) in situ Secchi 
depths in the Sentinel-2 model. Although we captured a sufficient range of Secchi depths for a statistical fit, the 
Landsat-8 model would be strengthened by adding higher in situ Secchi depth values (>1 m). Coordinating field 
surveys with satellite overpasses would strengthen future remote sensing studies and provide more matchups for 
empirical algorithm adjustments.

Additionally, further investigation into the diurnal variability introduced by tidal forcing is important for inter-
preting water clarity (Shi et al., 2013). Future work could expand on our model to include tidal effects, which 
are different at each site. The residence times in this system range from weeks near the mainland to hours near 
the inlets (Safak et al., 2015), so tides more significantly affect inlet match-ups. We recommend that the current 
model be used to map spatiotemporal patterns and changes in water clarity across Landsat and Sentinel sensors.

4.4. Coupled In Situ/Satellite Spatiotemporal Analysis

Spatial variation in water clarity as captured by MSI and OLI (Figures 7 and 8) is affected by aquatic vegetation, 
salt marshes, tides, winds, bathymetry, and other factors. Submerged aquatic vegetation decreases turbidity by 
enhancing sediment deposition, and salt marshes (masked in white) slow down exchange with the ocean (Nardin 
et al., 2018). Strong winds can lead to increased mixing in the lagoon and decreased lagoon/ocean exchange 
(Safak et al., 2015). Patterns in water clarity can be paired with other data (e.g., bathymetry, weather data, hydrol-
ogy) to better understand drivers of water clarity.

Satellite ZSD maps (Figure 8) and in situ water quality data (Figure 10) demonstrate strong temporal variability 
in Secchi depth. As a highly seasonal system, we expect water clarity to change over the course of the year, but 
trends shown by in situ or satellite data alone may be affected by unique biases introduced by each approach. Field 
measurements are rarely taken during stormy winter weather when the water is more mixed and turbid, so in situ 
winter values may be biased toward higher measurements. In situ ZSD depth measurements can also be biased by 
reduced visibility from waves, cloud cover, and sun position, as well as observer error (Pitarch, 2020). Satellite 
measurements are also imperfect, being affected by adjacency effects, proximity to land, seafloor backscatter, 
cloud cover, and aliasing due to whitecaps. There are also spatial limitations in satellite data retrievals, as shown 
by the inability to obtain satellite data too close to land (ca. <100 m away) or in areas affected by sunglint.

Coupling in situ ZSD with satellite ZSD can help alleviate these biases. For example, satellite data in our temporal 
analysis of three representative water quality sites may have alleviated the wintertime bias in in situ measure-
ments. Additionally, the timing of field sampling within a season changed among years, which may have led to 
seasonal trends being confounded with interannual variability. Satellite data from 2013 to 2021 helped fill these 
gaps and create a more even spread of data across the year (Figures 9b, 9d, and 9f). An area for future work 
would be to conduct a rigorous analysis of Secchi depth seasonality using paired in situ and satellite observations. 
Interannual in situ ZSD were also scarce at all three sites from 2013 to 2021 before satellite data was added. The 
combined time series showed no evidence of interannual changes, although relative constancy in water clarity 
may soon be changing (Parker & Crichton, 2011). This provides opportunities to further evaluate the model's 
predictive power with future in situ matchups. Rapid, accelerating sea level rise (Sallenger et al., 2012) and storm 
intensification (Fenster & Hayden, 2007; Hayden et al., 1991) may increase coastal erosion and increase turbidity 
(Turner et al., 2021). Likewise, increasing frequency, duration, and intensity of marine heatwaves threaten recently 
restored seagrass meadows, which have stabilized sediments and reduced local turbidity and chlorophyll concen-
trations (Aoki et al., 2020; Orth et al., 2012; Ummenhofer & Meehl, 2017). Rising water temperatures could also 
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affect numerous parameters relevant to water clarity such as phytoplankton concentrations (Pesce et al., 2018; 
Trombetta et al., 2019). It is vital to couple in situ observations with satellite observations over the long term to 
understand and derive changes in water clarity and separate directional trends from natural variability.

5. Conclusion
We developed a Landsat-8/Sentinel-2 remote sensing model to estimate water clarity in an optically complex 
coastal water body. The application of this model increases the spatiotemporal resolution of water clarity esti-
mation, addresses algorithm overestimates of water clarity for specific localities, and decreases errors associated 
with Landsat-8/Sentinel-2. We believe our approach can be implemented in dynamic coastal water bodies with 
limited in situ measurements; for example, as part of routine water quality monitoring. Coupling accurate satellite 
estimates with in situ observations over the long term is crucial to understanding coastal water clarity variability 
and its underlying physical and biological drivers. This understanding could help improve water clarity predic-
tions and lead to the better management of coastal ecosystems.

Data Availability Statement
Datasets and software used for the analysis of in situ and satellite data were archived with the Environmental 
Data Portal (EDI) via https://doi.org/10.6073/pasta/fe66683665a0133b2d831e552ecbae10 under a CC-BY Attri-
bution license and are available in this in-text citation reference: Lang et al. (2022). Satellite data was processed 
by NASA SeaDAS 8.2 (Baith et al., 2001; National Aeronatics and Space Administration and Ocean Biology 
Processing Group,  2022), available for download at https://seadas.gsfc.nasa.gov/downloads/ under the GNU 
General Public License (GPL), and ACOLITE from the Royal Belgian Institute of Natural Sciences (Version 
20220222.0) (Royal Belgian Institute of Natural Sciences and The Remote Sensing and Ecosystem Modelling 
Team,  2022; Vanhellemont,  2019,  2020; Vanhellemont & Ruddick,  2018), available for download at https://
odnature.naturalsciences.be/remsem/software-and-data/acolite under the GNU General Public License v2. 
Level-1 Collection 1 Landsat-8 were downloaded from USGS Earth Explorer, available here: https://earthex-
plorer.usgs.gov (U.S. Geological Survey, 2022) in compliance with U.S. Public Domain. Level-1 images used 
in this study can be downloaded using the bounding box [37.6501, −75.7864], [37.6077, −75.4582], [37.0596, 
−75.7809], [37.1570, −76.0776], date range 1 January 2013 to 30 July 2022, and Landsat Level-1 Collection-1 
under Data Sets. Level-1 Collection-1 Sentinel-2 images are available to download from the Copernicus Open 
Access Hub (European Space Agency,  2022), available here: https://scihub.copernicus.eu/ and subject to the 
Legal Notice on the use of Copernicus Sentinel Data and Service Information: https://sentinels.copernicus.eu/
documents/247904/690755/Sentinel_Data_Legal_Notice. Level-1 data used in this study can be downloaded by 
selecting the appropriate bounding box around the VCR peninsula (see above coordinates), selecting Sentinel-2 
mission, and selecting S2MSI1C as the Product Type. Processed Level-2 imagery available at Lang et al., 2022 
data set described above. In situ water quality data is available at this in-text citation reference: McGlathery and 
Christian (2020) and at http://www.vcrlter.virginia.edu/cgi-bin/showDataset.cgi?docid=knb-lter-vcr.247 under a 
CC-BY Attribution license. Random sampling of coordinate points was done in QGIS 3.14 (QGIS.org, 2020) at 
https://www.qgis.org/en/site/forusers/download.html and under the GNU General Public License (GPL). Figures 
and statistics were done in R 4.2.1 (R Core Team, 2022) at https://www.qgis.org/en/site/forusers/download.html 
and under the GNU General Public License v2. Satellite algorithms were applied in MATLAB (The MathWorks, 
Inc., 2022) at https://www.mathworks.com/products/matlab.html.
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