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Abstract

The relationship between biodiversity and stability, or its inverse, temporal

variability, is multidimensional and complex. Temporal variability in aggre-

gate properties, like total biomass or abundance, is typically lower in commu-

nities with higher species diversity (i.e., the diversity–stability relationship

[DSR]). At broader spatial extents, regional-scale aggregate variability is also

lower with higher regional diversity (in plant systems) and with lower spatial

synchrony. However, focusing exclusively on aggregate properties of commu-

nities may overlook potentially destabilizing compositional shifts. It is not yet

clear how diversity is related to different components of variability across

spatial scales, nor whether regional DSRs emerge across a broad range of

organisms and ecosystem types. To test these questions, we compiled a large

collection of long-term metacommunity data spanning a wide range of taxo-

nomic groups (e.g., birds, fish, plants, invertebrates) and ecosystem types

(e.g., deserts, forests, oceans). We applied a newly developed quantitative

framework for jointly analyzing aggregate and compositional variability

across scales. We quantified DSRs for composition and aggregate variability

in local communities and metacommunities. At the local scale, more diverse

communities were less variable, but this effect was stronger for aggregate

than compositional properties. We found no stabilizing effect of γ-diversity
on metacommunity variability, but β-diversity played a strong role in reduc-

ing compositional spatial synchrony, which reduced regional variability.

Spatial synchrony differed among taxa, suggesting differences in stabilization

by spatial processes. However, metacommunity variability was more strongly

driven by local variability than by spatial synchrony. Across a broader range

of taxa, our results suggest that high γ-diversity does not consistently stabilize
aggregate properties at regional scales without sufficient spatial β-diversity to
reduce spatial synchrony.

KEYWORD S
community variability, diversity–stability relationship, metacommunity, spatial
insurance hypothesis, stability

INTRODUCTION

Temporal variability (or its inverse, stability) in the
distribution and abundance of species has important
implications for the maintenance of biodiversity and
ecosystem functions (McCann, 2000; Tilman et al., 2014).
Ecological communities can vary through time along
multiple dimensions, including species composition and
aggregate properties (like total abundance or biomass) that
ignore composition (Cottingham et al., 2001; Hillebrand
et al., 2018; Hillebrand & Kunze, 2020; Micheli et al., 1999).
Various mechanisms have been proposed to explain
why variability in aggregate properties is often lower in
species-rich communities than in species-poor communities,

a pattern known as the diversity–stability relationship (DSR)
(Craven et al., 2018; Ives & Carpenter, 2007; McCann, 2000;
Tilman, 1999). This reduced variability can arise from
portfolio effects that relate to the statistical and ecological
benefits of high species richness for ecosystem functioning
(Doak et al., 1998; Thibaut & Connolly, 2013; Tilman et al.,
1998; Yachi & Loreau, 1999) or from compensatory dynam-
ics that occur when populations fluctuate asynchronously
through time (Brown et al., 2016; Gonzalez & Loreau, 2009;
Klug et al., 2000). Empirically, theDSR has beenwell studied
in local communities, but it is less clear how temporal vari-
ability is regulated at the broader spatial extents where
ecosystem management decisions are made and spatial
dynamics operate (Chen et al., 2022; Gonzalez et al., 2020;

2 of 17 WISNOSKI ET AL.

 19399170, 0, D
ow

nloaded from
 https://esajournals.onlinelibrary.w

iley.com
/doi/10.1002/ecy.4136 by U

niversity O
f V

irginia A
lderm

an L
ibrary, W

iley O
nline L

ibrary on [18/07/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

mailto:nathan.wisnoski@msstate.edu


Lamy et al., 2021; Loreau et al., 2003; Wang et al., 2019;
Wang& Loreau, 2016;Wilcox et al., 2017).

Temporal aggregate variability at regional scales
depends on the variability of local communities and the
degree of spatial synchrony among communities (Wang
et al., 2019; Wang & Loreau, 2014, 2016). For example,
regional-scale fluctuations in total biomass or abundance
can be reduced through a dampening of local fluctuations
(e.g., through local portfolio effects or compensatory
dynamics) or through a reduction in spatial synchrony
(Wang et al., 2019). Low spatial synchrony implies that
community variability is weakly spatially correlated, which
can dampen variability at the regional scale through a pro-
cess called the spatial insurance effect (Catano et al., 2020;
Howeth & Leibold, 2010; McGranahan et al., 2016; Steiner
et al., 2011; Wang et al., 2021; Wilcox et al., 2017). Spatial
insurance may be strengthened by environmental hetero-
geneity, which generates contrasting population dynamics
among communities, or by dispersal rates that are low
enough to prevent spatial homogenization that could cause
patches to fluctuate similarly across the metacommunity
(Daleo et al., 2023; Gouhier et al., 2010; Lamy et al., 2019;
Loreau et al., 2003; Thompson et al., 2015).

The strength and direction of the DSR can differ
across spatial scales because variability and diversity both
change with spatial extent (Arag�on et al., 2011; Gonzalez
et al., 2020; Liang et al., 2022; Wang et al., 2019, 2021;
Wang & Loreau, 2014, 2016). At regional scales, higher
γ-diversity is sometimes associated with lower variability
in total metacommunity biomass (Arag�on et al., 2011;
Wang et al., 2019; Wang & Loreau, 2016). For example,
in a desert grassland community, both local and regional
variability decreased as α- and γ-diversity increased,
respectively (Chalcraft, 2013). However, broader surveys
of plant communities have shown mixed evidence of a
regionally stabilizing effect of γ-diversity (Liang et al.,
2022; Wang et al., 2021; Wilcox et al., 2017). Instead, spa-
tial turnover in species composition (β-diversity) has been
shown to have a stronger stabilizing effect at the regional
scale by reducing spatial synchrony in community
dynamics, which dampens biomass fluctuations in the
metacommunity (Catano et al., 2020; Delsol et al., 2018;
Liang et al., 2022; Qiao et al., 2022). However, the stabi-
lizing effects of β-diversity on aggregate variability are
not always to be expected, and may depend on complex
interactions between environmental heterogeneity, spe-
cies traits, and dispersal (van der Plas et al., 2023).

Regional-scale studies of the DSR have largely
overlooked the relationship between diversity and composi-
tional variability (Lamy et al., 2021). Quantifying composi-
tional and aggregate variability together is important
because a lack of variability in total metacommunity bio-
mass can conceal broad-scale changes in composition

(Lamy et al., 2021; Micheli et al., 1999; Xu et al., 2022).
Furthermore, compositional studies can reveal species com-
binations that are important for the conservation of biomass
across spatial scales (Arranz et al., 2022). It is not yet clear
how different facets of biodiversity relate to compositional
variability at local and regional scales. For example,
species-rich plant communities often have higher variability
in composition due to increased biotic interactions and niche
partitioning (e.g., which drive compensatory dynamics), in
addition to the stochastic fluctuations of communities
with smaller average population sizes (Hector et al., 2010;
Tilman, 1999; Tilman et al., 2006; Wang et al., 2019). But this
positive relationship between richness and compositional
variability is not universal (Chalcraft, 2013; Cottingham
et al., 2001). Extending this relationship to the regional scale
suggests that metacommunities with higher γ-diversity
could be more compositionally variable, but empirical stud-
ies have found the lowest compositional variability at inter-
mediate γ-diversity (Chalcraft, 2013). Compositional DSRs
at both local and regional spatial scales merit additional
study across ecosystems and taxonomic groups to assess
their generality and transferability.

Using a large compilation of long-term metacommunity
time series data (n = 29; Table 1), from a range of ecosystem
types (e.g., deserts, forests, coral reefs) and taxonomic groups
(e.g., birds, fish, plants, algae), we quantified diversity–
stability relationships at multiple spatial scales. Specifically,
we examined community variability (both aggregate and
compositional) at both local (observational unit, such as a
sampling plot) and regional (study scale, such as a Long-
Term Ecological Research [LTER] site) spatial scales, along-
side changes in diversity, to address three questions.
First (Q1), how does local diversity relate to aggregate and
compositional variability within communities, and do
broader relationships emerge across ecosystems and
organisms? Second (Q2), does sustained β-diversity reduce
spatial synchrony? And third (Q3), how are aggregate and
compositional variability at themetacommunity scale related
to local and spatial components of biodiversity and variabil-
ity? Our synthesis found support for local DSRs, with wide
variability among systems in compositional DSRs; strong
evidence that spatial β-diversity reduces both compositional
and aggregate spatial synchrony; and that β-diversity is
important for reducing aggregate variability at regional scales
through reductions in compositional spatial synchrony.

METHODS

Data acquisition, processing, archiving

We acquired 29 data sets spanning a wide range of eco-
systems and organismal groups represented primarily by
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the LTER Network, with data obtained from the
Environmental Data Initiative (EDI) portal (https://portal.
edirepository.org). We used time series of species assem-
blages containing abundance, percent cover, or biomass
data using the ecocomDP model (O’Brien et al., 2021). We
kept data sets with at least five spatial and at least five
temporal sampling locations to ensure sufficient spatial
and temporal resolution. We then filtered and aggre-
gated each data set to ensure homogeneous sampling,
and consistent taxonomic identification, and to make
sure that each data set represented a collection of poten-
tially interacting species (i.e., our data sets focus on
competitive metacommunities).

To ensure homogeneous sampling, we retained only
the spatial locations that were sampled at every time
step. If some locations were not sampled annually,
we retained only the portion of the data set with
uninterrupted, annual temporal sampling while still
retaining at least five sites and five time points. When
a data set was sampled twice or more per year, we com-
puted annual averages, summations, or maximums of
species abundances, depending on the best approach
for the survey method, to aid in comparison across data
sets (Appendix S1).

We aggregated or filtered data to ensure homogeneous
taxonomic identification. Our taxonomic information was

TAB L E 1 Summary of datasets included in the synthesis of diversity–stability relationships in metacommunities.

Dataset ID Site code
Organismal

group Location Initial year
Duration
(years)

Spatial
sites

Taxa
sampled

and-birds AND Birds Oregon, USA 2009 5 184 81

and-plants AND Plants Oregon, USA 1989 21 12 85

bes-birds BES Birds Maryland, USA 2005 5 52 33

cap-birds CAP Birds Arizona, USA 2001 16 35 104

cap-herps CAP Herps Arizona, USA 2013 5 7 18

cdr-grasshopper CDR Grasshopper Minnesota, USA 1989 18 19 50

cdr-plantsABC CDR Plants Minnesota, USA 1982 23 18 128

cdr-plantsD CDR Plants Minnesota, USA 1982 23 5 128

fce-diatoms FCE Diatoms Florida, USA 2005 10 30 193

fce-fish-Dry FCE Fish Florida, USA 2006 11 10 56

fce-fish-Wet FCE Fish Florida, USA 2011 6 14 56

gce-mollusc GCE Mollusc Georgia, USA 2000 14 18 9

hays-plants HAYS Plants Kansas, USA 38 35 14 139

jrn-lizards JRN Lizards New Mexico, USA 1990 16 9 18

jrn-plants JRN Plants New Mexico, USA 1915 18 10 113

knz-grasshopper KNZ Grasshopper Kansas, USA 1996 19 13 43

luq-snails LUQ Snails Puerto Rico 1991 27 40 19

mcr-algae MCR Algae Moorea, French Polynesia 2006 10 6 73

mcr-coral MCR Coral Moorea, French Polynesia 2005 13 6 31

mcr-inverts MCR Inverts Moorea, French Polynesia 2005 17 6 17

sbc-algae SBC Algae California, USA 2001 18 9 59

sbc-fish SBC Fish California, USA 2001 18 9 64

sbc-mobileInverts SBC Mobile California, USA 2001 18 9 34

sbc-sessileInverts SBC Sessile California, USA 2001 18 9 71

sev-arthropods SEV Arthropods New Mexico, USA 1992 13 10 316

sev-grasshopper SEV Grasshopper New Mexico, USA 1992 22 10 54

sev-plants SEV Plants New Mexico, USA 2003 13 8 157

sgs-plants1 SGS Plants Colorado, USA 1999 8 6 84

sgs-plants2 SGS Plants Colorado, USA 1995 14 6 58

Note: Dataset ID refers to the identifier used in the analysis and referred to in Appendix S1. Duration and spatial sites represent the data included in the
analysis after passing the criteria described in the methods.
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provided mostly at the species level, but some data sets
contained information at the genus, family, or order
level. This posed an issue only when individuals were
identified at both the genus level and at the level of spe-
cies nested within that genus. For example, some indi-
viduals were identified as simply belonging to a genus
(e.g., “Carex sp.”), while most individuals were identi-
fied as a species of said genus (e.g., “Carex phoetida”).
Such heterogeneous identification in the data suggested
that species identification was inconsistent. As a general
rule, if taxa identified at the genus level comprised a
small portion of the individuals within a genus
(i.e., <5% of records were identified at the genus rather
than species level), we removed the genus-level data
from the data set. Conversely, if >5% of individuals were
identified at the genus level, we assumed this reflected
inconsistent identification. In this case, we lumped taxo-
nomic identification at the genus level. We used a cutoff
of 5% in most cases (Appendix S1). We removed all spe-
cies with an undetermined identification.

We identified potential metacommunities by
retaining data sets with shared, potentially interacting
species among local sites. For example, when a data set
contained two or more distinct taxonomic groups
(e.g., fish, sessile invertebrate, and algal assemblages in
the Santa Barbara Coastal LTER), we treated these
groups as separate data sets. When a data set contained
sites that shared <5% of species, we investigated these
sites further (by looking at species identities and the spa-
tial distribution of species among sites) and excluded sites
if they were geographically separate from or shared
few/no species with other sites in the metacommunity.
We plotted species accumulation curves, time series of
species abundance, spatiotemporal replication, and the
number of species shared between spatial locations.
Information about the data sets is given in Appendix S1.
All analyses were conducted in the R statistical comput-
ing environment, v.4.2.1 (R Core Team, 2022).

Quantifying aggregate and compositional
variability

To quantify variability at local and regional scales in our
metacommunity data sets, we used two multiplicative
partitioning frameworks, one for aggregate (Wang &
Loreau, 2014, 2016) and one for compositional (Lamy
et al., 2021) variability.

We used the aggregate partitioning approach to ana-
lyze temporal variability in the total abundance/biomass
of each local community and of the metacommunity.
This was computed as a weighted average of the variabil-
ity in local communities

CV2
α ¼

Pm
i σTi
μTT

� �2

, ð1Þ

and the variability of all communities in the
metacommunity

CV2
γ ¼

σTT
μTT

� �2

, ð2Þ

where μTT is the temporal mean total abundance/
biomass of all m sites in the metacommunity; σTi is the
standard deviation of total abundance/biomass in com-
munity i, and σTT is the standard deviation of the whole
metacommunity (Wang & Loreau, 2014).

We used the compositional partitioning approach to
calculate the average temporal variability in species rela-
tive abundances within local communities (BDh

α) and the
temporal variability in relative abundances at the
metacommunity scale (BDh

γ ), thereby capturing both
changes in richness and relative abundance. To compute
BDh

α, we first calculated the temporal variance in the
Hellinger-transformed relative abundance of each species
within each community, summed these variances across
all species in the community, then calculated the
weighted average of all local community variabilities
weighted by their total abundances (Lamy et al., 2021):

BDh
α ¼

Xm

i

wi

XS

j

vhij, ð3Þ

where wi is the relative weight of community i and vhij is
the temporal variance of species j in community i after
Hellinger transformation (h superscript), summed across
S species and all m communities. Regional compositional
variability was computed as the sum of variances for spe-
cies at the regional scale:

BDh
γ ¼

XS

j

vhTj, ð4Þ

where vhTj is the temporal variance of the Hellinger-
transformed total abundance of species j summed across
all communities in the metacommunity. The composi-
tional metrics extend the BD metric of the variance-based
approach to beta diversity (Legendre & De C�aceres, 2013).

For each metacommunity data set, we partitioned the
regional-scale variability into its components of mean
local variability (described above) and spatial synchrony.
We obtained spatial synchrony components for both
aggregate (ϕ) and compositional (BDh

ϕ) dimensions of
variability in metacommunities, where ϕ¼CV2

γ=CV
2
α and

BDh
ϕ ¼BDh

γ=BD
h
α (Lamy et al., 2021). Values of 0 for ϕ or

BDh
ϕ indicate no synchrony and a complete dampening of

variability at regional scales, while 1 indicates perfect
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synchrony and no spatial stabilization. Thus, these spa-
tial synchrony terms serve as scaling factors that link
local- and regional-scale variability.

Testing multiscale diversity–stability
relationships

We compared the relationships between variability
(aggregate and compositional) and diversity at different
scales in the metacommunity. For every moment in time,
we partitioned regional γ-diversity with a multiplicative
approach γ¼ β× αð Þ, where γ was metacommunity rich-
ness, α was mean local richness, and β¼ γ=α for each
metacommunity time series in our data set. Then, α, β,
and γ components of diversity were averaged through
time, yielding long-term estimates of mean local (α),
among-site (β), and regional (γ) diversity for each
metacommunity. With these calculations, we addressed
three main questions about DSRs in metacommunities.

Question 1 (Q1): How does local diversity relate
to aggregate and compositional variability
within communities, and do broader
relationships emerge across ecosystems and
organisms?

To investigate local-scale DSRs, we focused on within
and among-metacommunity patterns. At the local scale,
we predicted that plots with higher species richness
would be less variable in their aggregate properties, but
that species richness would show a potentially weaker,
positive relationship with compositional variability. Within
each metacommunity, we first computed the z-score for
richness to ease comparisons across metacommunities,
rescaling richness relative to other sites in the same
metacommunity. We then computed the temporal average
of z-transformed α-diversity of each plot and the temporal
variability of (1) total community abundance, CV¼ σTi=μTi,
where μTi is the mean total abundance for community i,
and (2) composition, BD¼PS

j v
h
ij, the unweighted form

of Equation (3).
We then tested whether species-rich plots in each

metacommunity were more or less variable through time
in their aggregate or compositional properties using lin-
ear mixed effects models in the lme4 R package v. 1.1-32
(Bates et al., 2015). We modeled plot-level CV or BD as
the response variable and plot-level mean richness as the
predictor. We used a random intercepts and random
slopes model, such that different metacommunities could
have different DSRs, while contributing to the among-group
mean intercept and slope (Harrison et al., 2018).

We estimated the fixed effects of mean richness to identify
emergent trends across the datasets. To quantify the extent
to which metacommunities differed in their DSRs, we com-
puted the variance explained by the time-averaged local rich-
ness using the marginal (without the random effects) and
conditional (including the random effects) R2 approach for
(G)LMMs (Nakagawa& Schielzeth, 2013).

Question 2 (Q2): Does sustained β-diversity
reduce spatial synchrony?

The scaling factors that link local variability to
metacommunity variability (ϕ,BDh

ϕ) are interpreted as
spatial synchrony components. We compared the scaling
of compositional and aggregate variability to assess the
relative magnitude of spatial stabilization within and
across different ecosystem types and organismal groups.
We visualized the reduction in variability from the local
scales to the regional scale. For each metacommunity, we
compared the aggregate (ϕ) and compositional (BDh

ϕ)
spatial synchrony among all the metacommunities, and
computed Spearman’s rank correlation to quantify the
association between compositional and aggregate spatial
synchrony. When ϕ�BDh

ϕ, aggregate properties were
weakly stabilized by space compared with compositional
properties; when ϕ�BDh

ϕ, composition was weakly
stabilized by space compared with aggregate properties.

To test whether these synchrony values were related to
spatial differences in community composition, we com-
pared them with a temporal average of spatial β-diversity
in each metacommunity. This temporally averaged spatial
β-diversity captures sustained compositional heterogeneity
among plots in the metacommunity, a putative driver of
decreased spatial synchrony. We predicted compositional
spatial synchrony would decrease with β-diversity faster
than aggregate spatial synchrony due to the more direct
relationship between β-diversity and compositional syn-
chrony than with aggregate properties like total abun-
dances. We evaluated this prediction using Bayesian linear
mixed effects models. We used a Bayesian approach to
avoid boundary issues with maximum likelihood methods
for mixed models (Chung et al., 2015), and we fit models
using the “stan_lmer()” function in the R package
rstanarm v.2.21.4 (Goodrich et al., 2020). We fitted random
slope and random intercepts models using LTER site as a
random factor. We used weakly informative priors (Chung
et al., 2015) and sampled posterior distributions with
MCMC using four chains of 5000 iterations each (with a
burn-in of 1000 samples). We assessed chain convergence
with visual inspection of trace plots, temporal autocorrela-
tion, and the bR metric (where bR¼ 1 indicates convergence
among chains) (Vehtari et al., 2021). We confirmed that
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observed data points fell within posterior prediction
intervals, and estimated posterior medians and 95% credi-
ble intervals using Highest Density Intervals.

Question 3 (Q3): How are aggregate and
compositional variability at the
metacommunity scale related to local and
spatial components of biodiversity
and variability?

We then evaluated whether diversity and variability were
related at the metacommunity scale and how variability
propagates across spatial scales. We predicted that
increased γ-diversity and increased β-diversity would
dampen aggregate metacommunity variability. However,
the relationship with compositional metacommunity var-
iability was predicted to be less clear given the range of
compositional DSRs previously described at local and
regional scales. We hypothesized that higher β-diversity
would reduce compositional variability at regional scales,
while α- and γ-diversity could increase compositional
metacommunity variability. We used random slopes and
intercepts Bayesian linear mixed effects models to assess
the relationships between variability at the metacommunity
scale and α-, β-, and γ-diversity, with LTER site as a ran-
dom factor to account for nonindependence in co-located
metacommunities. We used weakly informative priors
and sampled the posterior distribution with four MCMC
chains with 5000 iterations each and checked models
with the same approaches as described for Q2.

Because variability at the metacommunity scale can
come from local variability or spatial synchrony, we
used structural equation modeling (SEM) to partition
the pathways contributing to metacommunity variabil-
ity. We partitioned the contributions of diversity, vari-
ability, and synchrony to compositional and aggregate
metacommunity variability using the piecewiseSEM R
package v.2.3.0 (Lefcheck, 2016). We computed the χ2

and Fisher’s C statistics to assess model fit (rejecting
models with p-values below 0.05, which indicate that
the SEM model has a poor fit to the data). We present
the final model with significant paths only, showing
standardized regression coefficients. Code to repro-
duce the analysis is located in a Zenodo archive
(Wisnoski, 2023).

RESULTS

We found general support for local-scale diversity–
stability relationships. Sites with more species in the
metacommunity tended to have much lower variability

in total community abundance or biomass (Figure 1a;
fixed effects: intercept = 0.596 ± 0.0497 SE, t = 11.99;
β = −0.052 ± 0.017 SE, t = −3.065). While not all com-
munities showed this expected DSR (e.g., algae and some
invertebrates), it did emerge as a general pattern across
studies (Appendix S2: Table S1). The random effects
explained a substantial amount of variation in local variabil-
ity (R2

m = 0.024; R2
c = 0.717), indicating large differences

in DSR slopes and intercepts among metacommunities.
We present the slopes and intercepts for each dataset in
Appendix S2: Table S2. We found weaker support for a
relationship between compositional variability and local
species richness (Figure 1b). There was a negative
effect of richness on compositional variability when
looking across ecosystems and organisms (fixed effects:
intercept=0.316±0.029 SE, t=10.76; β=−0.023±0.011 SE,
t=−2.07), but some individual metacommunities
showed strong positive relationships between richness
and compositional variability, as evidenced by differ-
ences in the slopes across taxa and organism groups
(Appendix S2: Table S3). Accounting for these
among-dataset differences explained much more of the
variation in local compositional variability (R2

m = 0.014;
R2
c = 0.725), demonstrating a range of local DSRs detected

for compositional properties.
Metacommunities with higher sustained spatial

β-diversity over time exhibited lower spatial synchrony
(Figure 1c,d). We detected negative relationships between
β-diversity and compositional synchrony (fixed effects
estimate: −0.09, [−0.15, −0.03] 95% credible interval) and
aggregate synchrony (estimate: −0.12, [−0.19, −0.06]
95% CI). Full model results are provided in Appendix S2:
Tables S4 and S5.

Overall, we found a positive, but moderate, correla-
tion (ρ = 0.47) between aggregate (ϕ) and compositional
(BDh

ϕ), synchrony, indicating that metacommunities
with lower compositional spatial synchrony also tended
to have less aggregate synchrony (Figure 2). However,
metacommunities differed in the relative degree of spatial
synchrony in aggregate and compositional variability
(i.e., deviations from the 1:1 line in Figure 2). In other
words, some metacommunities showed a greater reduc-
tion in aggregate—but not compositional—properties
across scales, and vice versa. Plants and invertebrate
communities tended to have the highest spatial syn-
chrony, in both compositional and aggregate dimen-
sions (Appendix S2: Figure S1). In contrast, bird
metacommunities showed consistently low spatial
synchrony. Animals with slightly lower dispersal abili-
ties (e.g., fish, herps) exhibited intermediate synchrony
values between birds and plants. Interestingly, fish showed
low spatial synchrony in aggregate properties, but higher
spatial synchrony in composition.
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Variability in total metacommunity abundance showed
no relationship with γ- or α-diversity (Figure 3a,e), but was
negatively related to β-diversity (Figure 3c; estimate: −0.06,
[−0.13, −0.01] 95% CI). Compositional metacommunity
variability was unrelated to γ- or β-diversity (Figure 3b,d),
but was positively related to α-diversity (Figure 3f; estimate:
0.01, [0, 0.02] 95% CI). Plants tended to have high composi-
tional, but low aggregate variability, while invertebrates
had high aggregate but low compositional variability;
herpetofauna, birds, and algae had low metacommunity
variability (Appendix S2: Figure S1). Variability and

synchrony partitions for all datasets are shown in
Appendix S2: Figure S2.

Diversity, synchrony, and variability influenced variabil-
ity at the regional scale through multiple direct and indirect
pathways (Figure 4; χ2 = 8.53, p= 0.577, df= 10; Fisher’s
C= 8.523, p= 0.86, df= 14). In general, α-, β-, and
γ-diversity had significant direct effects on compositional
variability and synchrony, which, in turn, had direct effects
on aggregate variability and synchrony. Thus, diversity
effects on aggregate properties occurred indirectly, mediated
by compositional changes. Compositional metacommunity

 Rm
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F I GURE 1 Local (a, b) and spatial (c, d) diversity–stability relationships. Relationship between mean α-diversity and (a) local aggregate

variability and (b) local compositional variability. Bold black lines represent the fixed effects of α-diversity and thinner colored lines the

relationships within each metacommunity. R2
m represents the variance explained by the fixed effects only, while R2

c represents the variance

explained by the fixed and random effects. Mean spatial β-diversity was significantly negatively related to spatial synchrony in (c) aggregate

and (d) compositional properties. Solid line represents the fixed effects from a Bayesian linear mixed effects model. Gray lines depict fixed

effects from a sample of posterior models.
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variability was significantly positively related to composi-
tional spatial synchrony (0.488, standardized path coeffi-
cients reported here and for the following relationships) and
local compositional variability (0.725). Compositional spatial
synchrony was significantly negatively related to average
beta diversity (−0.716) and positively related to local compo-
sitional variability (0.419), which was significantly related
to α (1.595) and β (1.110) diversity. In contrast, aggregate
metacommunity variability was significantly related to
aggregate spatial synchrony (0.642) and local aggregate vari-
ability (0.829). Aggregate spatial synchrony was positively
related to compositional synchrony (0.456), while local
aggregate variability was positively related to local composi-
tional variability (0.496). Indirect effects of diversity on com-
positional and aggregate metacommunity variability differed
in sign depending on different pathways. For example,
β-diversity had negative effects on compositional and aggre-
gate metacommunity variability mediated by compositional
spatial synchrony, but it also had positive effects that acted
through increased local compositional variability (Figure 4).

DISCUSSION

We analyzed the multiscale relationships between diversity
and variability in empirical metacommunities and
addressed three main questions. Q1: At the local scale, sites

with higher species richness had lower variability in aggre-
gate properties and (to a lesser degree) community
composition. Q2: Metacommunities with higher spatial
β-diversity had lower spatial synchrony for both composi-
tional and aggregate properties. Q3: At the metacommunity
scale, aggregate variability was unrelated to γ-diversity,
but negatively related to β-diversity. Compositional
metacommunity variability was positively related to mean
α-diversity. Metacommunity variability was more strongly
influenced by local variability than by spatial synchrony.
β-Diversity was the primary driver of regional stability by
reducing spatial synchrony, but it could also indirectly pro-
mote regional variability by increasing local compositional
variability. Thus, aggregate stability shifted from being
driven by α-diversity at local scales to β-diversity at broader
scales, while β-diversity had opposing indirect effects on
compositional metacommunity variability. Overall, our
study suggests that, across a wide range of taxonomic
groups, DSRs established at local scales may become
decoupled at broader spatial scales.

Diversity–stability relationships at the
local scale

We observed a variety of diversity–stability relationships
at the local scale. In general, we found support for the
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F I GURE 2 The relationship between compositional and aggregate spatial synchrony for all metacommunities (Spearman’s ρ = 0.47).

Metacommunities above the 1:1 line had a smaller reduction in aggregate than compositional variability from local to regional scales, while

those below the 1:1 line had a relatively greater reduction in aggregate than compositional variability.
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stabilizing effect of α-diversity on aggregate variability
(e.g., total community biomass) (Figure 1a). However,
there was variation in DSR slopes among organismal
groups. For example, several invertebrate communities
did not follow a negative relationship between diversity
and aggregate variability, but instead showed a positive
relationship. Fish, bird, and most plant communities
supported a stabilizing effect of biodiversity. Relative to
the numerous studies analyzing DSRs in plant communi-
ties, our broader analysis suggests there could be devia-
tions from predicted DSRs that depend on the organisms
in the community.

We found more heterogeneous relationships between
diversity and compositional variability (Figure 1b).
Overall, there was a negative relationship between richness
and compositional variability across all metacommunities.
However, within metacommunities, we often found strong
positive or negative relationships between average site
richness and compositional variability. For example, in
many (but not all) invertebrate communities, communities
with higher α-diversity were less variable in their composi-
tion over time, as we observed with bird and fish commu-
nities. In contrast, algae and plant communities with
higher average richness tended to be more compositionally
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F I GURE 3 Diversity–stability relationships for aggregate (left column) and compositional (right column) variability at the

metacommunity scale, in relation to the temporal average of regional gamma-diversity (a, b), the temporal average of spatial beta diversity

(c, d), and the temporal average of mean alpha-diversity (e, f). Solid line represents the fixed effects from a Bayesian linear mixed effects

model, shown only when the 95% credible intervals exclude zero. Gray lines depict fixed effects from posterior possible models.
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variable (Figure 1b). This positive relationship is consistent
with the predictions established in other plant communi-
ties (Hector et al., 2010; Tilman, 1999; Tilman et al., 2006;
Wang et al., 2019). It may arise from competing species
that respond differently to environmental fluctuations,
such that environmental shifts that decrease the abun-
dances of some species allow competing species to increase,
generating high compositional variability (Tilman, 1996).
Our broader synthesis suggests that this positive relation-
ship may not translate to communities of other organisms,
especially animal communities.

β-Diversity reduces spatial synchrony

The strongest and most consistent relationship that
emerged in our study was the negative relationship

between mean spatial β-diversity and spatial synchrony
(Figures 1c,d and 4). This pattern emerged across
metacommunities spanning a range of ecosystem types
and organismal groups, including species with different
dispersal capabilities. Moreover, because spatial synchrony
in both composition and total abundance declined with
β-diversity, this suggests that aggregate metacommunity
variability generally declined due to spatially distinct com-
munity dynamics, rather than noncompositional factors
like asynchronous fluctuations in community abundance
or biomass. However, this was not always the case.
For example, the fish metacommunity at the SBC LTER
had low aggregate variability due to low aggregate spatial
synchrony, but high spatial synchrony in composition
(Figure 2). This pattern may indicate that reductions in
regional variability were not due to spatial insurance
effects, but instead due to external factors, such as spatially
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asynchronous environmental variation (Lamy et al., 2021).
Across all ecosystems, the effects of β-diversity tended to
flow from diversity to compositional synchrony, to aggre-
gate synchrony, and to aggregate metacommunity variabil-
ity (Figure 4).

Our results support the prediction that β-diversity
is important for reducing aggregate metacommunity
variability due to its effects on reducing compositional
synchrony (Figures 3c and 4). Recent empirical work in
temperate forests across northern China further supports
this prediction by showing that reducing spatial syn-
chrony was more important than reducing local variabil-
ity for stabilizing aggregate properties at broad spatial
scales (Qiao et al., 2022). In our analysis, however, local
variability was a slightly stronger pathway to regional
variability than spatial synchrony, and higher β-diversity
was also associated with increased local variability
(Figure 4). The positive association between β-diversity
and local variability is likely to be due to dispersal from
compositionally different communities, which facilitates
local turnover. Understanding these direct and indirect
pathways is important because the long-term mainte-
nance of spatial ecological processes that promote asyn-
chrony in the metacommunity could be desirable for
management and conservation (Harrison et al., 2020;
Socolar et al., 2016).

Taxonomic patterns in aggregate and
compositional spatial synchrony

In our analysis, bird metacommunities had the lowest com-
positional spatial synchrony, while plant metacommunities
tended to have the highest (Figure 2; Appendix S2:
Figure S1). One possible explanation for this result might
relate to dispersal capacity and habitat selection. Birds are
strong dispersers with the potential for habitat selection,
allowing environmental tracking (i.e., seeking favorable
habitats for reproduction) across a spatially heterogeneous
landscape (e.g., Catano et al., 2020). The bird meta-
community from the Baltimore Ecosystem Survey (BES)
had the largest reduction in variability from local to
regional scales for both total abundance and composition,
followed by birds in the Andrews Experimental Forest
(AND) and the Central Arizona Phoenix (CAP) urban eco-
system (Figure 2). High β-diversity and low compositional
spatial synchrony in these metacommunities suggests that
local community dynamics counteracted each other at the
regional scale (Figure 1c,d), reducing metacommunity
variability. At the local scale, bird communities were less
variable in their total abundances but more variable in
composition than other taxa (Appendix S2: Figure S1), a
pattern consistent with local compensatory dynamics

(Brown et al., 2016). Together, this suggests that bird
metacommunities may be stabilized by reduced composi-
tional spatial synchrony and local aggregate variability.

In contrast, plant metacommunities tended to have
high spatial synchrony in both compositional and aggre-
gate properties (Figure 2; Appendix S2: Figure S1). Such
high spatial synchrony suggests that spatial processes
contribute little to the reduction in variability from local
to regional scales. High spatial synchrony could occur if
plants are not dispersal limited and respond similarly to
environmental fluctuations across the landscape. The
spatial heterogeneity of the grassland sites included in this
analysis could also be insufficient to generate the high
β-diversity necessary to confer regional stability. Indeed,
several plant metacommunities had low β-diversity, which
may explain their high spatial synchrony (Figure 1c,d).
High spatial synchrony may also be due to a comparatively
small spatial extent of the region studied (Liang
et al., 2022), suggesting that spatial extent may contribute
to differences among metacommunities. Even among plant
metacommunities, some were more spatially synchronous
than others (Appendix S2: Figure S2), which may be due to
differences in plant demographic traits in relation to
environmental variability. Understanding the interplay of
spatiotemporal heterogeneity and dispersal for species
diversity and community dynamics at different scales
could be especially relevant for conservation (Andrade
et al., 2020; Chase et al., 2020), and our analysis suggests
there could be key differences among taxa that must be
taken into consideration before implementation.

Diversity–stability relationships at the
regional scale

Our results suggest a transition in how DSRs scale up
from local to metacommunity scales. While α-diversity
tended to reduce aggregate fluctuations at the local scale
(Figure 1a), we found no evidence that higher γ-diversity
reduced the variability of total metacommunity abun-
dance (Figures 3a and 4). Although γ-diversity reduced
aggregate variability at the regional scale in recent
syntheses of plant biodiversity experiments focusing on
within-ecosystem patterns (Liang et al., 2022; Wang
et al., 2019, 2021), our results suggest that this relation-
ship may not hold more broadly across a wider collection
of organisms and ecosystems. The absence of a regional
DSR across ecosystems may occur because different
numbers of species may be needed to stabilize different
ecosystems, making γ-diversity a poor predictor of
variability.

In contrast with theoretical predictions that
γ-diversity should stabilize aggregate properties at broad
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spatial scales, metacommunities may exhibit additional
sources of variability that dilute the strength of this
predicted relationship among ecosystems. Other dimen-
sions of community structure, such as evenness (Craven
et al., 2018; Valencia et al., 2020) or the spatial synchrony
of richness (Walter et al., 2021), may also be relevant for
community variability beyond species richness alone.
Likewise, species identity may be an important consider-
ation, as some metacommunities with low γ-diversity had
low aggregate variability (Figure 3a), possibly indicating
that a few well adapted species may be sufficient to stabi-
lize regional abundances. Environmental variability is
also likely to be important, with some metacommunities
existing in relatively constant environments, while others
exhibit higher temporal or spatial heterogeneity. These
additional factors could explain why our results were
consistent with those of other syntheses, which found
weak relationships between diversity and biomass pro-
duction at metacommunity scales (Wilcox et al., 2017).

Compositional metacommunity variability was posi-
tively related to mean α-diversity (Figure 3f). This rela-
tionship could arise because of the strong positive
relationship between mean α-diversity and local composi-
tional variability, and the strong influence of local
compositional variability on metacommunity variability
(Figure 4). In other words, a metacommunity where a
large proportion of sites has high α-diversity may indicate
that regionally, the metacommunity has high variability
due to numerous highly variable local communities, such
as in strongly competing plant communities (Hector
et al., 2010; Tilman, 1996). These local fluctuations could
scale up to the metacommunity scale if they are not suffi-
ciently offset by decreases in spatial synchrony due to dis-
persal limitation or spatial environmental heterogeneity.
However, it is worth noting that average local richness
may also be driven by a few sites with high richness, and
local sites with high α-diversity were not always the most
compositionally variable (Figure 1b). Therefore, mean
α-diversity emerges as a useful predictor of higher com-
positional metacommunity variability at the regional
scale even if individual sites within metacommunities do
not always show the same relationship.

β-Diversity was the primary stabilizing force that
reduced metacommunity variability. However, while we
found a significant negative relationship between β-diversity
and aggregate metacommunity variability, we did not find
one with compositional variability. One explanation for
these differences comes from the indirect effects of
β-diversity. When accounting for all the indirect pathways
(Figure 4), the total effects of β-diversity on aggregate
metacommunity variability were sufficiently negative. In
contrast, for compositional metacommunity variability, the
stabilizing effects of β-diversity (by reducing spatial
synchrony) can be counterbalanced by its destabilizing

effects (by increasing local variability). In other words, DSRs
become decoupled at the metacommunity scale because of
increased direct and indirect pathways that modify relation-
ships between biodiversity and variability.

Overall, our study demonstrates a range of aggregate and
compositional DSRs (varying in strength and direction)
beyond the patterns established in plant communities at the
local scale. Our results suggest that, at regional spatial scales,
β-diversity helps to stabilize metacommunities through
system-specific pathways. In some cases, β-diversity
could enable local turnover that drives local aggregate
fluctuations, which directly increases metacommunity
variability, while in other cases, the strong reduction in
compositional spatial synchrony with β-diversity is
enough to overcome any potentially destabilizing effects.
β-Diversity also appears to have a stronger stabilizing
effect on aggregate than compositional metacommunity
properties, perhaps because regional aggregate stability
can occur through regional compositional fluctuations
(Lamy et al., 2021). While our analysis is focused on
broad patterns across systems, future investigations into
the relationships between species traits and environ-
mental variation, conducted at appropriate spatial
scales, will be crucial for disentangling the local and
regional metacommunity processes that generate vari-
ability and for managing specific habitats for biodiver-
sity conservation.
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