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Understanding the processes that stabilize species populations is a fundamental ques-
tion in ecology and central to conservation biology. In metapopulations, dispersal can 
act as a ‘double edged’ sword for species stability by simultaneously decreasing local 
population variability (thereby decreasing local extinction risk) while increasing spatial 
synchrony (thereby increasing landscape-level extinction risk). These dynamics may 
operate at different timescales, complicating efforts to assess their relative importance 
for long-term stability. Here, we use a simple metapopulation model to understand 
how dispersal affects population variability and spatial synchrony across timescales. 
Our model shows that dispersal has contrasting effects at short versus long timescales 
on the variability and synchrony of populations. For populations that exhibit slow 
recovery when perturbed (i.e. under-compensatory growth), dispersal decreases local 
population variability while increasing spatial synchrony at long timescales. In con-
trast, at short timescales dispersal increases local population variability while decreasing 
spatial synchrony. For populations that recover via damped oscillation when perturbed 
(i.e. over-compensatory growth), the effects of dispersal are all opposite to those for 
populations with under-compensatory growth, at both short and long timescales. The 
timescale-dependent effect of dispersal has important implications for empirical stud-
ies. Specifically, studies conducted over short periods may only observe population 
variability increasing and spatial synchrony decreasing with dispersal, whereas the 
opposite patterns may predominate over longer periods. Our results provide novel 
insights on the dynamics underlying the role of dispersal and highlight the importance 
of time series length in empirical studies of metapopulations.
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Introduction

The field of spatial ecology has highlighted that the fate of 
a local population may be fundamentally tied to connection 
with surrounding populations. This idea has been formal-
ized in the concept of metapopulation, defined as a collec-
tion of spatially separate populations that interact through 
dispersal (Levins 1969, Hanski 1999). Early conceptualiza-
tions of metapopulation theory highlighted that dispersal is 
central to the stability of metapopulations. For instance, in 
a stochastic environment where populations fluctuate con-
stantly through time, dispersal can provide stabilizing effects 
by dampening the temporal variability of individual popula-
tions (Briggs and Hoopes 2004). On the other hand, dis-
persal can also generate spatial population synchrony (i.e. 
temporal correlation between local populations), such that 
all populations rise and fall at the same time (Liebhold et al. 
2004). Synchronized fluctuations can be destabilizing, even 
causing increased extinction of the entire metapopula-
tion (Heino  et  al. 1997, Earn  et  al. 2000). Consequently, 
the overall effect of dispersal on metapopulation stability is 
determined by the balance between its locally stabilizing and 
spatially synchronizing effects (Higgins 2009, Abbott 2011, 
Wang et al. 2015, Fox 2017).

The stabilizing and synchronizing effects of dispersal have 
been shown to depend on endogenous and exogenous fac-
tors, particularly the species’ intrinsic growth rates and spatial 
correlation in the environment. A population’s growth rate 
determines the rate at which it can independently recover 
from perturbation. Higher rates of dispersal, for instance, are 
often required to stabilize or rescue a local population with 
a lower growth rate (Wang et al. 2015, Zelnik et al. 2019). 
At the landscape level, spatial environmental correlation can 
cause spatial population synchrony (Moran 1953) and also 
modulate the role of dispersal, such that the synchronizing 
effect of dispersal is relatively weaker in a spatially correlated 
environment (Kendall et al. 2000, Ripa 2000, Liebhold et al. 
2004). Thus, dispersal, local population growth rate and 
environmental correlation interact and jointly shape the 
stability and synchrony in metapopulations (Kendall  et  al. 
2000, Wang et al. 2015). As these factors operate at different 
timescales (i.e. periods of fluctuations, such as annual disper-
sal events or decadal climate oscillations), the combination 
of these drivers may differentially affect population dynamics 
and spatial synchrony across timescales.

The timescale-specific patterns of population dynamics 
have long been acknowledged in ecological studies. Empirical 
studies reported that natural populations often exhibit posi-
tively autocorrelated temporal dynamics (Pimm and Redfearn 
1988, Halley 1996, Inchausti and Halley 2001). Theoretical 
models showed that population growth rate and the times-
cale structure of environmental fluctuations have significant 
influences on the timescale-specific patterns of population 
dynamics (Ripa and Lundberg 1996, Kaitala  et  al. 1997, 
Petchey  et  al. 1997). Specifically, populations with low 
growth rates converge gradually to its equilibrium when 
perturbed (referred to as ‘under-compensatory growth’; 

Ruokolainen et al. 2009), resulting in population dynamics 
with positive temporal autocorrelation. In contrast, popula-
tions with high growth rates overshoot the equilibrium when 
perturbed (referred to as ‘over-compensatory growth’), result-
ing in population dynamics with negative autocorrelation. 
Moreover, the timescale structure of environmental fluctua-
tions can generate similar patterns in population dynamics, 
e.g. populations living in a positively autocorrelated environ-
ment tend to exhibit positive autocorrelation (Kaitala et al. 
1997, García-Carreras and Reuman 2011).

In a spatial context, the importance of timescale has 
become evident for understanding synchronous fluctua-
tions of populations across space. Recent theory clarifies that 
spatial population synchrony measured at a specific times-
cale can be driven by spatial environmental correlation at 
the same timescale (Sheppard et al. 2016, Desharnais et al. 
2018). Such theoretical insights have provided new oppor-
tunities to detect the drivers of spatial population dynam-
ics in nature (Sheppard  et  al. 2016, 2019, Anderson  et  al. 
2019). For instance, by showing the timescale-specific syn-
chrony of both aphid populations and a number of climatic 
factors, Sheppard et  al. (2016) discovered that winter tem-
perature was a major driver of the spatial synchrony of aphid 
phenology. Theory also indicated that the presence of dis-
persal could alter the effect of environmental correlation in 
shaping the timescale-specific patterns of spatial synchrony 
(Desharnais et al. 2018). But an important and understudied 
problem is how dispersal itself shapes spatial synchrony across 
timescales. In particular, while dispersal can increase the sta-
bility and spatial synchrony of local populations (Abbott 
2011), whether such effects are consistent across timescales 
is unknown.

Here we investigate how dispersal interacts with popula-
tion growth rate and environmental noise to regulate popu-
lation variability and synchrony at different timescales, as 
well as their empirical implications. In particular, if dispersal 
affects population variability and synchrony differently at 
different timescales (on a frequency domain), we expect that 
the empirical relationships between dispersal and population 
variability or synchrony may vary with the time series length 
(on a time domain), because short time series can only cap-
ture dynamics at short timescales but long ones can capture 
dynamics at both short and long timescales. Specifically, we 
use two-patch metapopulation models and employ Fourier 
transforms (Brillinger 2001, Bloomfield 2004) to uncover 
the timescale-specific patterns of population variability and 
spatial synchrony in the frequency domain. We first examine 
whether dispersal has different effects on population vari-
ability or spatial synchrony at short versus long timescales, 
and test whether these effects differ when populations exhibit 
under- and over-compensatory growth. We then use simu-
lated time series to investigate relationships of dispersal with 
population variability and spatial synchrony, and test whether 
these relationships depend on time series length. Our analy-
ses derived new predictions on the timescale-dependent 
effects of dispersal, and we conclude with a discussion on the 
theoretical and practical implications of our results.
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Methods

The metapopulation model

We consider a two-patch discrete-time metapopulation 
model, in which population dynamics are governed by a 
Ricker growth function, environmental stochasticity and 
dispersal:
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Here, xi(t) and xi′(t) denote the population size in patch i 
recorded before and after the dispersal process, respectively. 
Ki and ri are the carrying capacity and intrinsic growth rate in 
patch i, and d is the dispersal rate. ε = (ε1,ε2)T is two-dimen-
sional Gaussian white noise with component variances 0.01 
and correlation coefficient ρ, which describes the response 
of population growth rate to environmental fluctuations. We 
calculate population variability and synchrony based on xi(t) 
to avoid the immediate influence of dispersal (de Raedt et al. 
2019; but see Desharnais et al. 2018). Previous studies that 
considered both xi(t) and xi′(t) showed that these two types of 
models generated qualitatively similar effects of dispersal on 
synchrony and variability (Wang et al. 2015).

In our model, we consider the intrinsic growth rates (ri) to 
be within the interval (0,2), such that local populations always 
have stable equilibria Ki. When 0 < ri < 1, a local population 
exhibits under-compensatory growth and converges mono-
tonically to its steady state when disturbed. When 1 < ri < 2, 
the local population exhibits over-compensatory growth and 
oscillates but eventually converges to its steady state when 
disturbed (Ruokolainen et al. 2009, McCann 2012).

Synchrony and variability: overall and timescale-
specific measures

We measure the temporal variability by the squared coeffi-
cient of variation (CV2), i.e. the ratio of temporal variance 
(var(x)) to the squared mean ( x 2 ) of population size. Given 
a time series of metapopulation dynamics, we calculate popu-
lation variability (VP) by the average temporal variability of 
the two local populations, i.e. VP = (CV2(x1) + CV2(x2))/2; we 
calculate metapopulation variability (VM) by the temporal 
variability of total metapopulation size (VM = (CV2(x1 + x2)). 
The spatial synchrony (ϕ) is defined as the temporal correla-
tion between the two populations (i.e. ϕ = cor(x1,x2)). To be 
distinguishable from the timescale-specific metrics below, we 
refer to these metrics as overall (meta)population variability 
and overall synchrony.

We then derive the timescale-specific metrics for vari-
ability and synchrony based on discrete Fourier transforma-
tion (Shumway and Stoffer 2017). Specifically, the sample 

variance of population i can be decomposed into the sum 
of timescale-specific terms: var(xi) = ΣσIii(σ), where Iii(σ) 
denotes the power spectrum of time series xi at the time 
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responding to the frequency f = T/σ in other contexts (Halley 
1996). Similarly, the sample covariance between popula-
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specific measure of metapopulation variability. By definition, 
the overall population and metapopulation variability can 
be expressed as the sum of timescale-specific population and 
metapopulation variability, respectively, i.e. VP = ΣσVP(σ) and 
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as a timescale-specific measure of synchrony used by 
Desharnais  et  al. (2018). The denominator of this metric 
serves to normalize by the power spectrum of the two time 
series, so ϕ(σ) is a timescale-specific measure of synchrony 
that is independent of timescale-specific patterns of variance 
(Desharnais et al. 2018). Note that the sum of ϕ(σ) across 
timescales does not equal the overall synchrony ϕ.

Analytic investigation

We solve analytically our model (1) in a spatially homoge-
neous case, i.e. the two patches have same environmental 
conditions (r1 = r2 = r, K1 = K2 = K), using a linearization 
approximation around the equilibrium (Supporting infor-
mation). Note that the linearization approximation requires 
that the equilibrium is asymptotically stable (0 < r < 2) and 
the environmental stochasticity is not very strong (Loreau 
and de Mazancourt 2013, Wang et al. 2015). For the over-
all metrics of variability and synchrony, previous studies 
have provided analytic solutions for ϕ, VP and VM (Abbott 
2011, Wang et al. 2015). These solutions show that dispersal 
decreases the variability of local populations but increases 
spatial synchrony; these two effects cancel out at the larger 
metapopulation scale, such that dispersal has no effect on 
the stability of the metapopulation. Given the homogeneity 
assumption of our model, we also have: VM = VP × (1 + ϕ)/2 
(Wang  et  al. 2015). For the timescale-specific metrics, we 
can similarly linearize the model and use filter theory of 
time series (Reinsel 1993) to derive the analytic solutions for 
ϕ(σ), VP(σ) and VM(σ) as functions of timescale, growth rate, 
dispersal and timescale-specific variance/synchrony of envi-
ronmental noise (Supporting information; Desharnais et al. 
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2018). We note that the analytical solutions of timescale-
specific variability and synchrony correspond to Fourier 
transforms of infinite time series (Supporting information). 
To visualize and compare with simulation results based on 
finite time series of length L, we rescaled the timescale-

specific variability and synchrony by: z
z

L
¢( ) = ( )
s

s
, where 

z(σ) denotes ϕ(σ), VP(σ) or VM(σ) (Supporting informa-

tion). Following Sheppard et al. (2016), we used the thresh-
old σ = 4 between short and long timescales. We note that 
the timescale σ corresponds to the reciprocal of frequency 
(on a frequency domain), which is different from the time 
series length L (on a time domain).

Simulations

We first simulated the nonlinear dynamics described by Eq. 
1 in homogenous landscapes with the same values of r and 
K in the two patches. We did so across a range of parameter 
values, systematically varying intrinsic growth rate (r = 0.45, 
0.55, …, 1.55), dispersal (d = 0, 0.05, 0.1, …, 0.5) and 
spatial correlation in the environment (ρ = −0.9, −0.8, …, 
0.8, 0.9). For each set of parameters, we set the initial values 
of population sizes as the carrying capacities K and ran the 
simulations for 1000 time steps to ensure that populations 
reach their stationary states and then recorded time series of 
the following 200 time steps. With the simulated time series, 
we applied the discrete Fourier transform (using the function 
‘fft’ in Matlab) to derive the timescale specific metrics of vari-
ability and synchrony.

The length of time series may affect our ability to detect 
timescale-specific patterns of variability and synchrony and 
their relation with ecological factors (Inchausti and Halley 
2002). To investigate this, we simulated metapopulation 
dynamics to stationary states (T = 1000) and then record 
time series with different lengths or number of time steps. 
We also examined how the ‘observed’ relationships (i.e. 
based on our simulated data) between dispersal and over-
all synchrony or variability might differ between short (five 
timesteps) and long (60 timesteps) time series.

We then performed further simulations to test whether 
our results hold in landscapes with spatial heterogeneity, 
temporally autocorrelated environmental noises and more 
patches. We first simulated heterogeneous metapopulations 
with asymmetric population growth rates (r1 ≠ r2) or carrying 
capacity (K1 ≠ K2). We then consider cases where the envi-
ronmental noise is temporally autocorrelated. Specifically, we 
define the noise term by a first-order autoregressive process 
(AR(1)): εi(t) = qεi(t − 1) + ξi(t), where ξi(t) are white noises 
and 0 ≤ q < 1, i = 1, 2. A larger autoregression coefficient q 
will result in a higher temporal autocorrelation. Lastly, we 
simulated a 16-patch metapopulation model with local pop-
ulation growth characterized by Eq. 1b and global dispersal, 
i.e. an emigrant from one patch has equal probabilities of 
immigrating into the other 15 patches.

Results

Analytic approximations for homogeneous 
metapopulations

We derive analytic solutions for timescale-specific metrics 
of synchrony and variability in homogenous two-patch 
landscapes (Supporting information). In the case that the 
environmental noise has the same power spectrum (I0) and 
spatial synchrony (ρ) at all timescales, the timescale-specific 
solutions for spatial synchrony (ϕ(σ)), population variability 
(VP(σ)) and metapopulation variability (VM(σ)) can be sim-
plified as (Supporting information, Eq. B14–B16):
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The above solutions clarify how the timescale-specific patterns 
of synchrony and variability depend on population dynami-
cal parameters. In particular, the timescale-specific variability 
for both local populations and metapopulations increase as 
the timescale (σ) increases when population dynamics are 
under-compensatory (r < 1), and they both decrease as σ 
increases when population dynamics are over-compensatory 
(r > 1) (Fig. 1; Supporting information). Similarly, at short 
timescales, synchrony and both population and metapopula-
tion variability all increase as r increases; at long timescales, all 
these synchrony and variability metrics decrease as r increases 
(Fig. 1; Supporting information).

The effect of dispersal on synchrony and variability 
depends on the timescale considered and the population 
growth rate (Fig. 2). When r < 1, dispersal increases spa-
tial synchrony and decreases population variability at long 
timescales, but it has just the inverse effects at short times-
cales. When r > 1, dispersal has the opposite effects on spa-
tial synchrony and population variability at both short and 
long timescales. In the absence of dispersal, spatial synchrony 
equals ρ at all timescales (Fig. 2b, e). Additionally, dispersal 
has no effect on the metapopulation variability at all times-
cales (Fig. 2c, f ).
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The correlation of environmental noises (ρ) has posi-
tive effect on spatial synchrony and metapopulation vari-
ability at all timescales, regardless of the magnitude of r 
(Supporting information). But the effects of environmental 
correlation on local population variability differ between 
under- and over-compensatory systems (Supporting infor-
mation). When r < 1, local population variability increases 
as ρ increases at long timescales, but it decreases slightly as 
ρ increases at short timescales. When r > 1, the opposite is 
true. See the Supporting information for analytic investiga-
tions on the dependency of VP, ϕ and VM on parameters d, 
σ and ρ.

Variability and synchrony in simulated 
metapopulations

Our simulations of homogeneous metapopulations reveal 
similar patterns as the analytic solutions, provided sufficiently 
long time series (e.g. 200 timesteps). In particular, dispersal 
has contrasting effects on variability and synchrony at short 
and long timescales, which depend on whether population 
growth follows under- or over-compensatory dynamics. 
In under-compensatory systems (r < 1), spatial synchrony 
increases and population variability decreases, as dispersal 
increases, at long timescales; in contrast, spatial synchrony 

Figure 1. Timescale-specific population variability (VP(σ), a), spatial synchrony (ϕ(σ), b) and metapopulation variability (VM(σ), c) as func-
tions of timescale (2 ≤ σ ≤ 100) and growth rate (r), derived from analytic approximations. Parameters: ρ = 0, d = 0.2, K = 10, var(ϵ) = 0.01.

Figure 2. Timescale-specific population variability (VP(σ)), spatial synchrony (ϕ(σ)) and metapopulation variability (VM(σ)) as functions of 
timescale and dispersal rate (d), derived from analytic approximations. Note that spatial synchrony always equals 0 when d = 0, which is 
invisible in the figure. Parameters are set with r = 0.5 (under-compensatory, a–c), 1.5 (over-compensatory, d–f ) and ρ = 0, K = 10, 
var(ϵ) = 0.01.
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decreases and population variability increases, as dispersal 
decreases, at short timescales (Supporting information). In 
over-compensatory systems (r > 1), the effects of dispersal are 
opposite at both short and long timescales (Supporting infor-
mation). In these homogeneous metapopulations, dispersal 
has no effect on metapopulation variability at all timescales, 
regardless of r (Supporting information). Besides, the (meta)
population variability and synchrony all increase with r at 
short timescales, and they decrease with r at long timescales 
(Supporting information). The environmental correlation 
generally increases metapopulation variability and synchrony, 
except for population variability at short timescales when r < 
1, or at long timescales when r > 1 (Supporting information). 
All these effects of dispersal, growth rate and environmental 
correlation are consistent with analytic solutions (Fig. 1, 2, 
Supporting information).

We then explore how the length of time series may influ-
ence their relationships with dispersal and intrinsic growth 
rate. The length of time series used for calculations directly 
influence the empirical relationship between dispersal and 
overall synchrony or population variability, even though 
the time series are generated from the same underlying 
model and only differ in their length. Specifically, given 
a long time series (length = 60), the overall synchrony 
increases, and overall population variability decreases, as 
dispersal increases, no matter whether local populations 
exhibit under- or over-compensatory dynamics (Fig. 3d–e). 
However, given a short time series (length = 5), the overall 

spatial synchrony decreases and the overall population vari-
ability increases, as dispersal increases, when populations 
exhibit under-compensatory growth (i.e. r < 1); opposite 
patterns are observed when populations exhibit over-com-
pensatory growth (i.e. r > 1) (Fig. 3a–b). In other words, 
when populations exhibited under-compensatory dynam-
ics, dispersal has contrasting effects on spatial synchrony 
or population variability in short versus long time series. 
Lastly, the metapopulation variability exhibits no rela-
tion with dispersal, regardless of the time series length or 
whether populations follow under- or over-compensatory 
dynamics (Fig. 3c–f ).

Similarly, the overall synchrony or (meta)population vari-
ability also exhibit contrasting relationships with the intrin-
sic growth rate (r) in short versus long time series. Given 
a long time series (length = 60), the overall synchrony and 
(meta)population variability all exhibit U-shape curves with 
r (Supporting information), consistent with theoretical pre-
dictions (Wang  et  al. 2015). However, given a short time 
series (length = 5), the overall synchrony and (meta)popula-
tion variability all increase monotonically with r (Supporting 
information). Besides, the overall synchrony and (meta)
population variability generally exhibit positive relationships 
with the environmental correlation, except that the variability 
of under-compensatory populations decreases slightly with ρ 
in short time series (Supporting information).

To examine how additional ecological complexity alter the 
above results obtained from homogeneous metapopulations 

Figure 3. Effect of dispersal on local population variability (a, d), spatial synchrony (b, e) and metapopulation variability (c, f ) calculated 
from short (a–c) and long (d–f ) time series. Blue and red lines represent models with under- and over-compensatory population growth 
(r = 0.5 or 1.5), respectively. Dash lines represent respectively analytical solutions of variability and synchrony derived in Wang et al. (2015) 
(note that solutions are the same when r = 0.5 and 1.5). Parameters: ρ = 0, var(ϵ) = 0.1, K = 10. The results represent the average across 500 
000 (length = 5) or 50 000 (length = 60) simulated communities.
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with white noises, we simulate population dynamics in 
heterogeneous landscapes or in temporally autocorrelated 
environments (Fig. 4). In heterogeneous landscapes where 
the two patches differ in their intrinsic growth rates (r) or 
carrying capacities (K), spatial synchrony at all timescales 
generally increase as dispersal increases in over-compensa-
tory systems (r > 1); in under-compensatory systems (r < 
1), spatial synchrony decreases as dispersal increases in short 
time series, and it increased as dispersal increases in long time 
series (Fig. 4). Such patterns also hold if the environmental 
fluctuations exhibited temporal autocorrelation. That said, 
if the environmental autocorrelation is very strong, spatial 
synchrony always increases with dispersal, regardless of the 
time series length (Fig. 4). Moreover, our simulations using 
16-patch models exhibited similar time length dependency 
of spatial asynchrony–dispersal relationship as 2-patch 
ones (Supporting information). In all these heterogenous 
or autocorrelated scenarios, the overall population variabil-
ity exhibits opposite patterns compared to those of overall 
synchrony (Supporting information). Overall, we find our 
results derived from two-patch homogeneous metapopula-
tions with white noise are generally consistent in larger or 
heterogeneous metapopulations or with temporally autocor-
related environmental variability.

Discussion

Our study demonstrates that dispersal has contrasting effects 
on spatial synchrony and population variability at short versus 
long timescales. We show that the well-documented locally 
stabilizing and spatially synchronizing effects of dispersal 

operate only at particular timescales, and opposite effects 
can arise at other timescales. We present analytic predictions 
for two-patch homogeneous metapopulations, which are 
shown by simulations to hold in broader context with spa-
tial heterogeneity and environmental autocorrelation. One 
implication of the timescale-dependent effects of dispersal 
is that the empirical relationship between dispersal and spa-
tial synchrony or population variability can exhibit opposite 
patterns, simply because of different time series lengths. Our 
findings have important implications for experimental and 
observational studies that seek to understand the role of dis-
persal in structuring and sustaining metapopulations.

Contrasting effects of dispersal at short versus long 
timescales

The effects of dispersal on population variability and syn-
chrony have been widely explored in metapopulation 
models. Previous models showed that dispersal is a ‘double‐
edged sword’ for metapopulation stability by decreasing 
local population variability but also increasing spatial syn-
chrony (Hudson and Cattadori 1999, Kendall  et  al. 2000, 
Abbott et al. 2011, Wang et al. 2015). While such local stabi-
lizing and spatially synchronizing effects of dispersal are well 
understood, our model demonstrates that these two effects 
are timescale-dependent and, moreover, such timescale-
dependency relies on the nature of population growth of the 
species of interest.

For populations exhibiting under-compensatory growth 
(i.e. slow recovery after being perturbed), the local sta-
bilizing and spatially synchronizing effects of dispersal 
operate mainly at long timescales. At short timescales, 

Figure 4. Effect of dispersal on spatial synchrony calculated from short (a–d), and long (e–h) time series under four scenarios: spatial het-
erogeneity in the intrinsic rate of under-compensatory grown (a, e), spatial heterogeneity in the intrinsic rate of over-compensatory grown 
(b, f ), spatial heterogeneity in the carrying capacity (c, g) and temporally autocorrelated environmental noise (i.e. red noise; d, h). Parameters 
are set as follows when not specified: ρ = 0, var(ϵ) = 0.1, r = 0.5, K = 10. The results represent the average across 500 000 (length = 5) or 50 
000 (length = 60) simulated communities.
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counterintuitively, dispersal destabilizes local populations 
and desynchronizes population dynamics across patches 
(Fig. 2a–c). Such counterintuitive effects can be under-
stood from the interaction between environmental fluctua-
tions and the statistical averaging effect of dispersal (Briggs 
and Hoopes 2004). For example, consider a starting point 
where the two patches have different population sizes due 
to environmental fluctuations (Fig. 5). During the next 
step, dispersal will decrease the population size in one patch 
and increase it in the other, followed by relatively moder-
ate changes in population size driven by local under-com-
pensatory population growth in both patches (Fig. 5a–c). 
Therefore, in the short term, dispersal causes different 
population sizes to converge toward intermediate values, 
which generates a negative correlation between populations 
and thus decreases spatial synchrony (Fig. 5a–c). But in the 
absence of dispersal, local population growth causes differ-
ent population sizes to converge toward the equilibrium, 
where a negative temporal correlation between the two pop-
ulations emerges only if the population size in one patch 
is larger, and that in the other patch is smaller than the 
equilibrium (Fig. 5d–f ). In contrast, for populations exhib-
iting over-compensatory growth (i.e. dampening oscillatory 
recovery after being perturbed), the interaction between 
environmental fluctuations and the averaging effects of dis-
persal leads to opposite effects of dispersal across timescales: 

dispersal has local stabilizing and spatially synchronizing 
effects at short timescales, and opposites effects at long 
timescales (Fig. 2d–f; see the Supporting information for 
illustration).

Although previous studies have revealed both under- 
and over-compensatory growth in natural populations, the 
former was found to be far more common than the latter 
(Fagan  et  al. 2010, Cortés 2016). In these under-com-
pensatory populations, the contrasting effects of dispersal 
at short versus long timescales lead to an increasing trend 
of spatial synchrony with timescales, even if spatial envi-
ronmental correlation is constant at all timescales (Fig. 2). 
Such an increasing trend of spatial synchrony with times-
cale is consistent with observations from recent empirical 
studies, which revealed a higher spatial synchrony at longer 
timescales in gypsy moth defoliation (Walter et al. 2017), 
zooplankton abundances (Anderson  et  al. 2019) and the 
productivity of terrestrial vegetation and marine phyto-
plankton (Defriez and Reuman 2017a, b, Sheppard  et  al. 
2019). One explanation for the higher spatial synchrony 
at longer timescales was the stronger spatial environmental 
correlation at long timescales (Sheppard et al. 2016, 2019, 
Desharnais  et  al. 2018). Our theoretical results, however, 
provide an alternative explanation from endogenous pro-
cesses via the interaction between dispersal and under-com-
pensatory growth dynamics.

Figure 5. An illustration on the dispersal-induced negative synchrony at short timescales in under-compensatory systems: with (a–c) and 
without (d–f ) dispersal. Each panel represents the dynamics of two populations (blue and red) during one time step. Three different sce-
narios of the initial states are shown in (a, d), (b, e) and (c, f ). Starting from a different population size (i.e. x1(t) and x2(t)), each population 
experiences first dispersal (d) and then local growth (r), indicated by the thick and thin arrows, respectively. The dashed lines indicate the 
overall changes during one time step. Strong dispersal reduces the difference between the two populations via a statistical averaging effect, 
and then the intrinsic growths moves the population size towards the equilibrium. Note that in a highly under-compensatory systems, the 
effects of intrinsic growth are moderate in one time step. Overall, the two populations always exhibit a negative correlation during one 
time step (between t and t + 1) in the presence of dispersal (a–c), and either positive (e–f ) or negative (d) correlations in the absence of 
dispersal.
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Time series length matters in metapopulation studies

The contrasting effects of dispersal at short versus long times-
cales lead to a sample size dependency of the empirical relation-
ship between dispersal and population variability or synchrony. 
For populations with under-compensatory growth, short time 
series would reveal a positive effect of dispersal on the overall 
population variability and a negative effect on overall spatial 
synchrony, which is the opposite of predictions derived from 
long time series or analytic solutions (Fig. 3; Abbott 2011, 
Wang et al. 2015). Such a contrast can be explained by the fact 
that short time series represented information mainly at short 
timescales, at which dispersal has opposite effects from long 
timescales (Fig. 5). In comparison, long time series cover infor-
mation at both short and long timescales, which reflect the 
combined effect of dispersal across all timescales. Sample size 
dependency also applies to other factors that exhibit contrast-
ing effects at short and long timescales – for instance popula-
tion growth rate (Supporting information).

Such a sample size dependency has two implications for 
ecological research. First, to understand the effect of disper-
sal (and other factors), comparison between metapopulation 
experimental studies should be made among experiments 
with similar time series length and between species with 
similar types of growth (e.g. over- or under-compensatory). 
A growing number of metapopulation experiments has been 
conducted to test the effect of dispersal on spatial synchrony 
and population variability, which revealed a range of effect 
sizes and directions (Dey and Joshi 2006, Steiner et al. 2011, 
2013, Thompson et al. 2015). Our results suggest that dif-
ferent time series length might complicate across-study com-
parison and account for the idiosyncratic conclusions in the 
literature. Smeti  et  al. (2016), for example, conducted an 
experiment of phytoplankton metapopulations that spanned 
15–30 generations and found no significant effects of disper-
sal on spatial asynchrony. Our results suggested that the short 
experimental period may explain the reported insignificant 
effect of dispersal. Second, because the goal of understanding 
variability and synchrony is to eventually predict the long-
term persistence of populations, we argue that sufficiently 
long time series should be used to reveal the long-term, or 
‘theoretically expected’, relationship between dispersal and 
population dynamics. An important question remains: ‘How 
long of a time series is necessary for experimental research to 
reveal the ‘theoretically expected’ relationship?

Determining a ‘critical time series length’ is particularly 
useful for metapopulation study design as well as cross-study 
comparisons. We suggest that a tentative time series length 
may be derived by conducting a simulation-based statisti-
cal power analysis. Specifically, based on prior knowledge on 
the dynamical parameters of the focal species (e.g. intrinsic 
growth rate), one can simulate metapopulation models with 
different experimental setting (e.g. gradients of dispersal, envi-
ronmental noise, number of replicates, etc.) and numerically 
determine the minimum time series length for exhibiting a 
positive dispersal–spatial synchrony relationship with a given 
accuracy (Supporting information). Our preliminary analyses 

show that a longer time series or more replicates are required 
for metapopulations with under-compensatory dynamics 
(r < 1), a lower environmental correlation between patches 
and replicates (ρ) and a narrower gradient of dispersal rate, 
whereas the variance of environmental noise (σ2) has only 
moderate influence (Supporting information). We encourage 
such kind of power analysis before starting a metapopulation 
study or conducting meta-analyses of spatial synchrony.

Conclusion

The past decades of metapopulation research have made signif-
icant progress in understanding the role of dispersal in popu-
lation variability and synchrony (Abbott et al. 2011). To date, 
however, studies have generally used overall measures of vari-
ability and synchrony that integrate information over a wide 
range of timescales, which potentially overlooked the times-
cale dependence of dispersal effects. Our study demonstrates 
that dispersal has contrasting effects on population variability 
and synchrony at short versus long timescales. A timescale-
specific perspective not only extends our understanding of 
dispersal impacts on metapopulations, but also has important 
implications for how we interpret the results from empirical 
studies utilizing time series of different lengths. In particular, 
the length of time series itself is sufficient to generate con-
trasting conclusions about the relationship between dispersal 
and spatial synchrony. Future studies are needed to explore 
the implications of the timescale-dependent effects of dis-
persal for population extinction probability and to examine 
how time series length may affect the empirical relationship 
between dispersal and spatial synchrony in empirical data. 
Our study highlights the importance of accounting for the 
time series length when comparing results among studies of 
spatial synchrony. This is in line with recent calls to account 
for spatial scale when comparing results among studies of bio-
diversity and stability (Chase and Knight 2013, Wang et al. 
2017). Our findings add to a growing body of work sup-
porting the idea that long-term, continual data collection 
(e.g. the long-term ecological research; LTER) is needed to 
advance population ecology (Clutton-Brock and Sheldon 
2010, Gaiser et al. 2020), because ecological cause-and-effect 
inferences can be qualitatively altered by time series length.
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